South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 1 (2021), pp. 325-346

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

COMMON FIXED POINTS OF A PAIR OF SUZUKI \mathcal{Z} -CONTRACTION TYPE MAPS IN b-METRIC SPACES

G. V. R. Babu and D. Ratna Babu*

Department of Mathematics, Andhra University, Visakhapatnam - 530003, Andhra Pradesh, INDIA

E-mail: gvr_babu@hotmail.com

*Department of Mathematics, PSCMRCET, Vijayawada - 520001, Andhra Pradesh, INDIA

E-mail: ratnababud@gmail.com

(Received: Nov. 14, 2019 Accepted: Feb. 25, 2021 Published: Apr. 30, 2021)

Abstract: In this paper, we introduce Suzuki \mathcal{Z} -contraction type (I) maps, Suzuki \mathcal{Z} -contraction type (II) maps, for a pair of selfmaps in b-metric spaces and prove the existence and uniqueness of common fixed points. We draw some corollaries to our results and provide examples in support of our results.

Keywords and Phrases: Common fixed point, b-metric space, b-continuous, Suzuki \mathcal{Z} -contraction type maps.

2020 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

Nonlinear analysis plays an important role in many branches of Applied Sciences, for latest works, we refer [13, 20, 24, 25, 26]. Particularly, fixed point theory is a part of nonlinear analysis and its development depends on the generalization of contraction conditions or/and generalization of ambient spaces of the operator under consideration. In 1975, Dass and Gupta [12] established fixed point results using contraction condition involving rational expressions and proved the existence of fixed points in complete metric spaces. In 2008, Suzuki [28] proved two fixed

point theorems, one of which is a new type of generalization of the Banach contraction principle and does characterize the metric completeness.

The main idea of b-metric was initiated from the works of Bourbaki [9] and Bakhtin [6]. The concept of b-metric space or metric type space was introduced by Czerwik [10] as a generalization of metric space. Afterwards, many authors studied fixed point theorems for single-valued and multi-valued mappings in b-metric spaces, for more information we refer [2, 7, 8, 11, 15, 18, 19, 27].

In this paper, we denote $\mathbb{R}^+ = [0, \infty)$ and \mathbb{N} is the set of all natural numbers.

Definition 1.1. [10] Let X be a non-empty set. A function $d: X \times X \to \mathbb{R}^+$ is said to be a b-metric if the following conditions are satisfied: for any $x, y, z \in X$;

- (i) $0 \le d(x, y)$ and d(x, y) = 0 if and only if x = y,
- $(ii) \ d(x,y) = d(y,x),$
- (iii) there exists $s \ge 1$ such that $d(x, z) \le s[d(x, y) + d(y, z)]$.

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with s = 1. In general, every b-metric space is not a metric space (Example 4.3, [4]).

Definition 1.2. [8] Let (X, d) be a b-metric space.

- (i) A sequence $\{x_n\}$ in X is called b-convergent if there exists $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$. In this case, we write $\lim_{n \to \infty} x_n = x$ and x is unique.
- (ii) A sequence $\{x_n\}$ in X is called b-Cauchy if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.
- (iii) A b-metric space (X,d) is said to be a complete b-metric space if every b-Cauchy sequence in X is b-convergent in X.

In general, a b-metric is not necessarily continuous.

Example 1.3. [14] Let $X = \mathbb{N} \cup \{\infty\}$. We define a mapping $d: X \times X \to [0, \infty)$ as follows:

$$d(m,n) = \begin{cases} 0 & \text{if } m = n, \\ \left| \frac{1}{m} - \frac{1}{n} \right| & \text{if one of } m, n \text{ is even and the other is even or } \infty, \\ 5 & \text{if one of } m, n \text{ is odd and the other is odd or } \infty, \\ 2 & \text{otherwise.} \end{cases}$$

Then (X, d) is a b-metric space with coefficient $s = \frac{5}{2}$.

Definition 1.4. [8] Let (X, d_X) and (Y, d_Y) be two b-metric spaces. A function

 $f: X \to Y$ is a b-continuous at a point $x \in X$, if it is b-sequentially continuous at x. i.e., whenever $\{x_n\}$ is b-convergent to x, fx_n is b-convergent to fx.

The following lemmas are useful in proving our main results.

Lemma 1.5. [5] Suppose (X, d) is a metric space. Let $\{x_n\}$ be a sequence in X such that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. If $\{x_n\}$ is a not Cauchy sequence then there exist an $\epsilon > 0$ and sequences of positive integers $\{m_k\}$ and $\{n_k\}$ with $n_k > m_k \geq k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$. For each k > 0, corresponding to m_k , we can choose n_k to be the smallest positive integer such that $d(x_{m_k}, x_{n_k}) \ge \epsilon, d(x_{m_k}, x_{n_k-1}) < \epsilon$ and

(i)
$$\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = \epsilon$$
 (ii) $\lim_{k \to \infty} d(x_{n_k-1}, x_{m_k}) = \epsilon$

$$\begin{array}{ll} \text{(i)} \lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = \epsilon \\ \text{(iii)} \lim_{k \to \infty} d(x_{m_k+1}, x_{n_k}) = \epsilon \\ \text{(iv)} \lim_{k \to \infty} d(x_{m_k+1}, x_{n_k-1}) = \epsilon. \end{array}$$

Lemma 1.6. [23] Suppose (X,d) is a b-metric space with coefficient $s \geq 1$ and $\{x_n\}$ be a sequence in X such that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. If $\{x_n\}$ is a not Cauchy sequence then there exist an $\epsilon > 0$ and sequences of positive integers $\{m_k\}$ and $\{n_k\}$ with $n_k > m_k \geq k$ such that $d(x_{m_k}, x_{n_k}) \geq \epsilon$. For each k > 0, corresponding to m_k , we can choose n_k to be the smallest positive integer such that $d(x_{m_k}, x_{n_k}) \ge \epsilon, d(x_{m_k}, x_{n_k-1}) < \epsilon$ and

(i)
$$\epsilon \leq \liminf_{k \to \infty} d(x_{m_k}, x_{n_k}) \leq \limsup_{k \to \infty} d(x_{m_k}, x_{n_k}) \leq s\epsilon$$

(i)
$$\epsilon \leq \liminf_{k \to \infty} d(x_{m_k}, x_{n_k}) \leq \limsup_{k \to \infty} d(x_{m_k}, x_{n_k}) \leq s\epsilon$$

(ii) $\frac{\epsilon}{s} \leq \liminf_{k \to \infty} d(x_{m_k+1}, x_{n_k}) \leq \limsup_{k \to \infty} d(x_{m_k+1}, x_{n_k}) \leq s^2\epsilon$

(iii)
$$\frac{\epsilon}{s} \leq \liminf_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \leq \limsup_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \leq s^2 \epsilon$$

(iii)
$$\frac{\epsilon}{s} \leq \liminf_{k \to \infty} d(x_{m_k+1}, x_{n_k}) \leq \limsup_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \leq s^2 \epsilon$$

(iv) $\frac{\epsilon}{s^2} \leq \liminf_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \leq \limsup_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \leq s^3 \epsilon$

Lemma 1.7. [1] Let (X,d) be a b-metric space with coefficient $s \geq 1$. Suppose that $\{x_n\}$ and $\{y_n\}$ are b-convergent to x and y respectively, then we have

$$\frac{1}{s^2}d(x,y) \le \liminf_{n \to \infty} d(x_n, y_n) \le \limsup_{n \to \infty} d(x_n, y_n) \le s^2 d(x,y).$$

In particular, if x = y, then we have $\lim_{n \to \infty} d(x_n, y_n) = 0$. Moreover for each $z \in X$ we have

$$\frac{1}{s}d(x,z) \le \liminf_{n \to \infty} d(x_n,z) \le \limsup_{n \to \infty} d(x_n,z) \le sd(x,z)$$

In 2015, Khojasteh, Shukla and Radenović [8] introduced simulation function and defined \mathcal{Z} -contraction with respect to a simulation function.

Definition 1.8. [16] A simulation function is a mapping $\zeta : \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ satisfying the following conditions:

- $(\zeta_1) \ \zeta(0,0) = 0;$
- (ζ_2) $\zeta(t,s) < s-t$ for all s,t>0;
- (ζ_3) if $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = l \in (0, \infty)$ then $\limsup_{n \to \infty} \zeta(t_n, s_n) < 0$.

Remark 1.9. [3] Let ζ be a simulation function. If $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = l \in (0, \infty)$, then $\limsup_{n \to \infty} \zeta(kt_n, s_n) < 0$ for any k > 1.

The following are examples of simulation functions.

Example 1.10. [3] Let $\zeta : \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ be defined by

- (i) $\zeta(t,s) = \lambda s t$ for all $t,s \in \mathbb{R}^+$, where $\lambda \in [0,1)$;
- (ii) $\zeta(t,s) = \frac{s}{1+s} t$ for all $s, t \in \mathbb{R}^+$;
- (iii) $\zeta(t,s) = s kt$ for all $t,s \in \mathbb{R}^+$, where k > 1;
- (iv) $\zeta(t,s) = \frac{1}{1+s} (1+t)$ for all $s,t \in \mathbb{R}^+$;
- (v) $\zeta(t,s) = \frac{1}{k+s} t$ for all $s,t \in \mathbb{R}^+$ where k > 1.

Definition 1.11 [16] Let (X,d) be a metric space and $f: X \to X$ be a selfmap of X. We say that f is a \mathbb{Z} -contraction with respect to ζ , if there exists a simulation function ζ such that

$$\zeta(d(fx, fy), d(x, y)) \ge 0$$

for all $x, y \in X$.

Theorem 1.12. [16] Let (X, d) be a complete metric space and $f: X \to X$ be a \mathbb{Z} contraction with respect to a certain simulation function ζ , then for every $x_0 \in X$,
the Picard sequence $\{f^n x_0\}$ converges in X and $\lim_{n\to\infty} f^n x_0 = u(say)$ in X and u is
the unique fixed point of f in X.

Recently, Olgun, Bicer and Alyildiz [21] proved the following result in complete metric spaces.

Theorem 1.13. [21] Let (X,d) be a complete metric space and $f: X \to X$ be a selfmap on X. If there exists a simulation function ζ such that

$$\zeta(d(fx, fy), M(x, y)) \ge 0$$

for all $x, y \in X$, where $M(x, y) = \max\{d(x, y), d(x, fx), d(y, fy), \frac{d(x, fy) + d(y, fx)}{2}\}$, then for every $x_0 \in X$, the Picard sequence $\{f^n x_0\}$ converges in X and $\lim_{n \to \infty} f^n x_0 = u$ (say) in X and u is the unique fixed point of f in X.

In 2018, Babu, Dula and Kumar [3] extended Theorem 1.13 of [21] to a pair of selpmaps in the setting of b-metric spaces as follows.

Theorem 1.14. [3] Let (X, d) be a complete b-metric space with coefficient $s \ge 1$ and $f, g: X \to X$ be a selfmaps on X. If there exists a simulation function ζ such that

$$\zeta(s^4d(fx,gy),M(x,y)) \ge 0$$

for all $x, y \in X$, where $M(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{2s}\}$, then f and g have a unique common fixed point in X, provided either f or g is b-continuous.

The following theorem is due to Kumam, Gopal and Budhia [17].

Theorem 1.15. [17] Let (X,d) be a complete metric space and $f: X \to X$ be a selfmap on X. If there exists a simulation function ζ such that

$$\frac{1}{2}d(x,fx) < d(x,y) \implies \zeta(d(fx,fy),d(x,y)) \ge 0$$

for all $x, y \in X$, then for every $x_0 \in X$, the Picard sequence $\{x_n\}$, where $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ converges to the unique fixed point of f.

In 2018, Padcharoen, Kumam, Saipara and Chaipunya [22], proved the following theorem in complete metric spaces.

Theorem 1.16. [22] Let (X,d) be a complete metric space and $f: X \to X$ be a selfmap on X. If there exists a simulation function ζ such that

$$\frac{1}{2}d(x,fx) < d(x,y) \implies \zeta(d(fx,fy),M(x,y)) \ge 0$$

for all $x, y \in X$, where $M(x, y) = \max\{d(x, y), d(x, fx), d(y, fy), \frac{d(x, fy) + d(y, fx)}{2}\}$, then for every $x_0 \in X$, the Picard sequence $\{x_n\}$, where $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ converges to the unique fixed point of f.

Recently, the authors of the present paper, extended the results, namely Theorem 1.15 and Theorem 1.16 to b-metric spaces [4]. Motivated by these works, we extend Theorem 1.15 and Theorem 1.16 to a pair of maps in b-metric spaces.

In Section 2, we introduce Suzuki \mathcal{Z} -contraction type (I) maps, Suzuki \mathcal{Z} -contraction type (II) maps in b-metric spaces for a pair of selfmaps and provide examples. In Section 3, we prove the existence and uniqueness of common fixed points of Suzuki \mathcal{Z} -contraction type (I) and type (II) maps. In Section 4, we draw some corollaries to our results and provide examples in support of our results.

2. Suzuki \mathcal{Z} -contraction type maps

In this section, we introduce Suzuki Z-contraction type (I) maps and Suzuki \mathbb{Z} -contraction type (II) maps for a pair of selfmaps in b-metric spaces.

Definition 2.1. Let (X,d) be a b-metric space with coefficient s > 1 and f, g: $X \to X$ be selfmaps on X. We say that (f,g) is a Suzuki \mathcal{Z} -contraction type (I) maps, if there exists a simulation function ζ such that

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} \le d(x,y) \text{ implies that } \zeta(s^4d(fx,gy),M_1(x,y)) \ge 0$$
(2.1)

for all $x, y \in X$, where $M_1(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{2s}\}$.

Example 2.2. Let X = (0,1) and let $d: X \times X \to \mathbb{R}^+$ defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ (x+y)^2 & \text{if } x \neq y. \end{cases}$$

Then clearly (X, d) is a b-metric space with coefficient s = 2.

We define $f, g: X \to X$ by $f(x) = \frac{x(5+x)}{256}$ and $g(x) = \frac{x}{16(1+x)}$.

We define $\zeta : \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ by $\zeta(t, s) = \frac{1}{4}s - t$.

Without loss of generality, we assume that $x \leq y$. We have $\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{y}{16(1+y)})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{x(5+x)}{256})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{x(5+x)}{256})^2\} \leq (x+y)^2 = \frac{1}{4} \min\{(x + \frac{x(5+x)}{256})^2, (y + \frac{x(5+x)}{256})^2\}$ d(x,y)

 $M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy)+d(y,fx)}{2s}\}$

$$= \max\{(x+y)^2, (x+\frac{x(5+x)}{256})^2, (y+\frac{y}{16(1+y)})^2, \frac{(x+\frac{y}{16(1+y)})^2 + (y+\frac{x(5+x)}{256})^2}{4}\}.$$

Now we consider
$$s^4 d(fx, gy) = 16(\frac{x(5+x)}{256} + \frac{y}{16(1+y)})^2 = \frac{1}{16}(\frac{x(5+x)}{16} + \frac{y}{(1+y)})^2 \le \frac{1}{16}(\frac{y(5+y)}{16} + \frac{y}{(1+y)})^2 \le \frac{1}{16}(y + \frac{y}{(1+y)})^2 \le \frac{1}{4}(x + y)^2 = \frac{1}{4}d(x, y) \le \frac{1}{4}M_1(x, y).$$

Therefore the pair (f, g) is a Suzuki \mathcal{Z} -contraction type (I) maps.

Definition 2.3. Let (X,d) be a b-metric space with coefficient $s \geq 1$ and f,g: $X \to X$ be selfmaps on X. We say that (f,g) is a Suzuki Z-contraction type (II) maps, if there exists a simulation function ζ such that

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} \le d(x,y) \text{ implies that } \zeta(s^4d(fx,gy),M_2(x,y)) \ge 0$$
(2.2)

for all $x, y \in X$, where $M_2(x, y) = \max\{d(x, y), \frac{d(y, gy)[1 + d(x, fx)]}{1 + d(x, y)}, \frac{d(y, fx)[1 + d(x, fx)]}{s^2(1 + d(x, u))}\}$.

Example 2.4. Let $X = \mathbb{R}^+$ and let d be defined as in Example 2.2.

We define $f, q: X \to X$ by

$$f(x) = \begin{cases} \frac{x^2}{256} & \text{if } x \in [0,1) \\ \frac{1}{16} & \text{if } x \in [1,\infty) \end{cases} \text{ and } g(x) = \begin{cases} \frac{x(1+x)}{512} & \text{if } x \in [0,1) \\ \frac{1}{32} & \text{if } x \in [1,\infty). \end{cases}.$$

We define $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ by $\zeta(t, s) = \frac{32}{4}s -$

Without loss of generality, we assume that $y \leq x$.

Case (i): $x, y \in [0, 1)$.

We have $\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = \frac{1}{4} \min\{(x + \frac{x^2}{256})^2, (y + \frac{y(1+y)}{512})^2\} \le (x+y)^2 = \frac{1}{4} \min\{d(x, fx), d(y, gy)\} = \frac{1}{4} \min\{d(x, f$ d(x,y).

$$\begin{split} M_2(x,y) &= \max\{d(x,y), \frac{d(y,gy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\} \\ &= \max\{(x+y)^2, \frac{(y+\frac{y(1+y)}{512})^2[1+(x+\frac{x^2}{256})^2]}{1+(x+y)^2}, \frac{(y+\frac{x^2}{256})^2[1+(x+\frac{x^2}{256})^2]}{4(1+(x+y)^2)}\}. \end{split}$$

Now we consider

Now we consider
$$s^4 d(fx, gy) = 16(\frac{x^2}{256} + \frac{y(1+y)}{512})^2 = \frac{1}{16}(\frac{x^2}{16} + \frac{y(1+y)}{32})^2 \le \frac{1}{16}(\frac{x^2}{16} + x)^2 \le \frac{1}{4}(x+y)^2 = \frac{1}{4}d(x,y) \le \frac{1}{4}M_2(x,y)$$

Case (ii): $x, y \in [1, \infty)$.

We have
$$\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = \frac{1}{4} \min\{(x + \frac{1}{16})^2, (y + \frac{1}{32})^2\} \le (x + y)^2 = d(x, y).$$

$$M_2(x, y) = \max\{d(x, y), \frac{d(y, gy)[1 + d(x, fx)]}{1 + d(x, y)}, \frac{d(y, fx)[1 + d(x, fx)]}{s^2(1 + d(x, y))}\}$$

$$= \max\{(x + y)^2, \frac{(y + \frac{1}{32})^2[1 + (x + \frac{1}{16})^2]}{1 + (x + y)^2}, \frac{(y + \frac{1}{16})^2[1 + (x + \frac{1}{16})^2]}{4(1 + (x + y)^2)}\}.$$

Now we consider

$$s^4d(fx,gy) = 16(\frac{1}{16} + \frac{1}{32})^2 = \frac{1}{4}(\frac{9}{16}) \le \frac{1}{4}(x+y)^2 = \frac{1}{4}d(x,y) \le \frac{1}{4}M_2(x,y).$$

Case (iii): $x \in [1, \infty), y \in [0, 1)$

We have $\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = \frac{1}{4} \min\{(x + \frac{1}{16})^2, (y + \frac{y(1+y)}{512})^2\} \le (x + y)^2 = \frac{1}{4} \min\{d(x, fx), d(y, gy)\} = \frac{1}{4} \min\{d(x, fx$ d(x,y).

$$M_2(x,y) = \max\{d(x,y), \frac{d(y,gy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\}$$

$$= \max\{(x+y)^2, \frac{(y+\frac{y(1+y)}{512})^2[1+(x+\frac{1}{16})^2]}{1+(x+y)^2}, \frac{(y+\frac{1}{16})^2[1+(x+\frac{1}{16})^2]}{4(1+(x+y)^2)}\}.$$

Now we consider

$$s^4d(fx,gy) = 16(\frac{1}{16} + \frac{y(1+y)}{512})^2 = \frac{1}{16}(1 + \frac{y(1+y)}{32})^2 \le \frac{1}{4}(x+y)^2 = \frac{1}{4}d(x,y) \le \frac{1}{4}M_2(x,y).$$

Therefore from all the above cases we conclude that the pair (f, q) is a Suzuki \mathcal{Z} -contraction type (II) maps.

Remark 2.5. It is clear from the definition of simulation function that $\zeta(t,s) < 0$ for all $t \geq s > 0$. Therefore

(i) if the pair (f, g) satisfies (2.1), then

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} \le d(x,y) \text{ implies that } s^4d(fx,gy) < M_1(x,y),$$

for all $x, y \in X$; and

(ii) if the pair (f,g) satisfies (2.2), then

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} \le d(x,y) \text{ implies that } s^4d(fx,gy) < M_2(x,y),$$
for all $x,y \in X$.

3. Main Results

Proposition 3.1. Let (X,d) be a b-metric space with coefficient $s \ge 1$ and $f,g: X \to X$ be two selfmaps. Assume that the pair (f,g) is a Suzuki \mathbb{Z} -contraction type (I) maps. Then u is a fixed point of f if and only if u is a fixed point of g. Moreover, in this case u is unique.

Proof. Let u be a fixed point of f. i.e., fu = u.

Suppose that $gu \neq u$.

We have

 $\frac{1}{2s} \min\{d(u, fu), d(u, gu)\} = \frac{1}{2s} \min\{d(u, u), d(u, gu)\} = 0 = d(u, u)$ and hence from the inequality (2.1), we get

 $\zeta(s^4d(fu,gu),M_1(u,u)) \geq 0$, where

 $M_1(u, u) = \max\{d(u, u), d(u, fu), d(u, gu), \frac{d(u, gu) + d(u, fu)}{2s}\} = d(u, gu).$

By using (ζ_2) , we have

 $0 \le \zeta(s^4d(u, gu), M_1(u, u)) < M_1(u, u) - s^4d(u, gu) = d(u, gu) - s^4d(u, gu),$ a contradiction.

Hence gu = u, so that u is a common fixed point of f and g.

Similarly, it is easy to see that if u is a fixed point of g then u is a fixed point of f also.

Suppose u and v are two common fixed points of f and g with $u \neq v$.

Since $\frac{1}{2s}\min\{d(u, fu), d(v, gv)\} \le d(u, v)$ so that from the inequality (2.1), we get $\zeta(s^4d(fu, gv), M_1(u, v)) \ge 0$, where

$$M_1(u,v) = \max\{d(u,v), d(u,fu), d(v,gv), \frac{d(u,gv)+d(v,fu)}{2s}\} = d(u,v).$$

By using (ζ_2) , we have

$$0 \le \zeta(s^4 d(u, v), M_1(u, v)) < M_1(u, v) - s^4 d(u, v) = d(u, v) - s^4 d(u, v),$$

a contradiction.

Therefore u = v. Hence f and g have a unique common fixed point in X.

Proposition 3.2. Let (X,d) be a b-metric space with coefficient $s \ge 1$ and $f,g: X \to X$ be two selfmaps. Assume that the pair (f,g) is a Suzuki \mathbb{Z} -contraction type (II) maps. Then u is a fixed point of f if and only if u is a fixed point of g. Moreover, in this case u is unique.

Proof. Follows as on the similar lines of Proposition 3.1 and hence we omit the proof.

Theorem 3.3. Let (X,d) be a complete b-metric space with coefficient $s \ge 1$ and (f,g) be a Suzuki \mathbb{Z} -contraction type (I) maps. If either f (or) g is b-continuous then f and g have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be arbitrary. Since $f(X) \subseteq X$ and $g(X) \subseteq X$, there exist $x_1, x_2 \in X$ such that $f(x_0) = x_1$ and $g(x_1) = x_2$. Similarly there exist $x_3, x_4 \in X$ such that $f(x_2) = x_3$ and $g(x_3) = x_4$.

In general, we construct a sequence $\{x_n\}$ in X by $fx_{2n} = x_{2n+1}, gx_{2n+1} = x_{2n+2}$ for $n = 0, 1, 2, \ldots$

Suppose $x_{2n} = x_{2n+1}$ for some n, then $x_{2n} = fx_{2n}$ so that x_{2n} is a fixed point of f. Hence by Proposition 3.1, we have x_{2n} is a fixed point of g also so that x_{2n} is a common fixed point of f and g.

Similarly, if $x_{2n+1} = x_{2n+2}$ for some n. Then x_{2n+1} is a common fixed point of f and g.

Hence without loss of generality, we assume that $x_n \neq x_{n+1}$ for all n.

Suppose n is even. Then $n = 2m, m \in \mathbb{N}$. Since

$$\frac{1}{2s}\min\{d(x_n, fx_n), d(x_{n+1}, gx_{n+1})\} = \frac{1}{2s}\min\{d(x_{2m}, fx_{2m}), d(x_{2m+1}, gx_{2m+1})\} \le d(x_{2m}, x_{2m+1}), \text{ it follows from (2.1) that}$$

$$\zeta(s^4d(fx_{2m}, gx_{2m+1}), M_1(x_{2m}, x_{2m+1})) \ge 0$$
 (3.1)

where

$$\begin{split} M_1(x_{2m},x_{2m+1}) &= \max\{d(x_{2m},x_{2m+1}),d(x_{2m},fx_{2m}),d(x_{2m+1},gx_{2m+1}),\\ &\qquad \qquad \frac{1}{2s}[d(x_{2m},gx_{2m+1})+d(x_{2m+1},fx_{2m})]\}\\ &= \max\{d(x_{2m},x_{2m+1}),d(x_{2m},x_{2m+1}),d(x_{2m+1},x_{2m+2}),\frac{d(x_{2m},x_{2m+2})}{2s}\}\\ &= \max\{d(x_{2m},x_{2m+1}),d(x_{2m+1},x_{2m+2})\}. \end{split}$$

If $d(x_{2m}, x_{2m+1}) < d(x_{2m+1}, x_{2m+2})$ then $M_1(x_{2m}, x_{2m+1}) = d(x_{2m+1}, x_{2m+2})$.

Therefore, from (3.1), we have

$$0 \le \zeta(s^4 d(x_{2m+1}, x_{2m+2}), M_1(x_{2m}, x_{2m+1}))$$

= $\zeta(s^4 d(x_{2m+1}, x_{2m+2}), d(x_{2m+1}, x_{2m+2}))$
< $d(x_{2m+1}, x_{2m+2}) - s^4 d(x_{2m+1}, x_{2m+2}),$

a contradiction.

Therefore
$$d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$$
 when n is even. (3.2)

Now, if n is odd, n = 2m + 1, (say), $m \in \mathbb{N}$.

Since

$$\frac{1}{2s}\min\{d(x_{n+1},fx_{n+1}),d(x_n,gx_n)\} = \frac{1}{2s}\min\{d(x_{2m+2},fx_{2m+2}),d(x_{2m+1},gx_{2m+1})\}$$

$$\leq d(x_{2m+2},x_{2m+1}), \text{ from (2.1), we have}$$

$$\zeta(s^4 d(fx_{2m+2}, gx_{2m+1}), M_1(x_{2m+2}, x_{2m+1})) \ge 0, \tag{3.3}$$

where

$$\begin{split} M_1(x_{2m+2},x_{2m+1}) &= \max\{d(x_{2m+2},x_{2m+1}),d(x_{2m+2},fx_{2m+2}),d(x_{2m+1},gx_{2m+1}),\\ &\frac{1}{2s}[d(x_{2m+2},gx_{2m+1})+d(x_{2m+1},fx_{2m+2})]\}\\ &= \max\{d(x_{2m+2},x_{2m+1}),d(x_{2m+2},x_{2m+3}),d(x_{2m+1},x_{2m+2}),\\ &\frac{d(x_{2m+1},x_{2m+3})}{2s}\}\\ &= \max\{d(x_{2m+2},x_{2m+1}),d(x_{2m+2},x_{2m+3})\}. \end{split}$$

If $d(x_{2m+2}, x_{2m+1}) < d(x_{2m+3}, x_{2m+2})$ then $M_1(x_{2m+2}, x_{2m+1}) = d(x_{2m+3}, x_{2m+2})$.

Therefore from (3.3), we have

$$0 \le \zeta(s^4 d(x_{2m+3}, x_{2m+2}), M_1(x_{2m+2}, x_{2m+1}))$$

= $\zeta(s^4 d(x_{2m+3}, x_{2m+2}), d(x_{2m+3}, x_{2m+2}))$
< $d(x_{2m+3}, x_{2m+2}) - s^4 d(x_{2m+3}, x_{2m+2}),$

a contradiction.

Therefore
$$d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$$
 when n is odd. (3.4)

From (3.2) and (3.4), it follows that $\{d(x_n, x_{n+1})\}$ is a decreasing sequence of nonnegative reals.

Thus there exists $r \geq 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$.

Suppose that r > 0.

By using the condition (ζ_3) with $t_n = d(x_{n+1}, x_{n+2})$ and $s_n = d(x_n, x_{n+1})$, we have $0 \le \limsup_{n \to \infty} \zeta(s^4 d(x_{n+1}, x_{n+2}), M_1(x_n, x_{n+1})) < 0$,

it is a contradiction.

Therefore

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0. \tag{3.5}$$

Next, we prove that $\{x_n\}$ is a b-Cauchy sequence.

For this it is sufficient to show that $\{x_{2n}\}$ is a b-Cauchy sequence.

On the contrary, suppose that $\{x_{2n}\}$ is not b-Cauchy. We consider the following two cases.

Case (i): s = 1.

In this case, (X,d) is a metric space. Then by Lemma 1.5 there exist an $\epsilon > 0$ and sequence of positive integers $\{2n_k\}$ and $\{2m_k\}$ with $2n_k > 2m_k \ge k$ such that $d(x_{2m_k}, x_{2n_k}) \ge \epsilon$ and

 $d(x_{2m_k}, x_{2n_k-2}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.5.

Suppose that there exists a $k_1 \in \mathbb{N}$ with $k \geq k_1$ such that

$$\frac{1}{2}\min\{d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1})\} > d(x_{2m_k}, x_{2n_k-1}).$$
 (3.6)

On letting as $k \to \infty$ in (3.6) and using (3.5), we get that $\epsilon \le 0$, a contradiction.

Therefore $\frac{1}{2}\min\{d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1})\} \le d(x_{2m_k}, x_{2n_k-1})$ and from

$$(2.1)$$
, we have

$$\zeta(d(fx_{2m_k}, gx_{2n_k-1}), M_1(x_{2m_k}, x_{2n_k-1})) \ge 0, \text{ where}
M_1(x_{2m_k}, x_{2n_k-1}) = \max\{d(x_{2m_k}, x_{2n_k-1}), d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1}), \frac{1}{2}[d(x_{2n_k-1}, fx_{2m_k}) + d(x_{2m_k}, gx_{2n_k-1})]\}
= \max\{d(x_{2m_k}, x_{2n_k-1}), d(x_{2m_k}, x_{2m_k+1}), d(x_{2n_k-1}, x_{2n_k}), \frac{1}{2}[d(x_{2n_k-1}, x_{2m_k+1}) + d(x_{2m_k}, x_{2n_k})]\}.$$

On taking limits as $k \to \infty$ and using (3.5), we get

$$\lim_{n \to \infty} M_1(x_{2m_k}, x_{2n_k - 1}) = \max\{\epsilon, 0, 0, \epsilon\} = \epsilon.$$

By using (ζ_3) with $t_n = d(x_{2m_k+1}, x_{2n_k})$ and $s_n = M_1(x_{2m_k}, x_{2n_k-1})$, we have $0 \le \limsup \zeta(d(x_{2m_k+1}, x_{2n_k}), M_1(x_{2m_k}, x_{2n_k-1})) < 0$,

it is a contradiction.

Case (ii): s > 1.

In this case, by Lemma 1.6, there exist an $\epsilon > 0$ and sequence of positive integers $\{2n_k\}$ and $\{2m_k\}$ with $2n_k > 2m_k \geq k$ such that $d(x_{2m_k}, x_{2n_k}) \geq \epsilon$ and $d(x_{2m_k}, x_{2n_k-2}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.6.

Suppose that there exists a $k_1 \in \mathbb{N}$ with $k \geq k_1$ such that

$$\frac{1}{2s}\min\{d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1})\} > d(x_{2m_k}, x_{2n_k-1}). \tag{3.7}$$

On letting limit superior as $k \to \infty$ in (3.7) and using (3.5), we get that $\epsilon \le 0$, a contradiction.

Therefore

 $\frac{1}{2s}\min\{d(x_{2m_k},fx_{2m_k}),d(x_{2n_k-1},gx_{2n_k-1})\} \leq d(x_{2m_k},x_{2n_k-1}) \text{ and from } (2.1), \text{ we have}$

$$\zeta(s^4 d(fx_{2m_k}, gx_{2n_k-1}), M_1(x_{2m_k}, x_{2n_k-1})) \ge 0, \tag{3.8}$$

where

$$\begin{split} M_1(x_{2m_k}, x_{2n_k-1}) &= \max\{d(x_{2m_k}, x_{2n_k-1}), d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1}), \\ &\frac{1}{2s}[d(x_{2n_k-1}, fx_{2m_k}) + d(x_{2m_k}, gx_{2n_k-1})]\} \\ &= \max\{d(x_{2m_k}, x_{2n_k-1}), d(x_{2m_k}, x_{2m_k+1}), d(x_{2n_k-1}, x_{2n_k}), \\ &\frac{1}{2s}[d(x_{2n_k-1}, x_{2m_k+1}) + d(x_{2m_k}, x_{2n_k})]\}. \end{split}$$

On taking limit superior as $k \to \infty$ and using (3.5), we get

$$\lim_{n \to \infty} M_1(x_{2m_k}, x_{2n_k - 1}) \le \max\{s\epsilon, 0, 0, \frac{s\epsilon}{2}\} = s\epsilon.$$

From (3.8), we have

$$0 \leq \limsup_{k \to \infty} \zeta(s^4 d(fx_{2m_k}, gx_{2n_{k-1}}), M_1(x_{2m_k}, x_{2n_{k-1}}))$$

$$\leq \limsup_{k \to \infty} [M_1(x_{2m_k}, x_{2n_{k-1}}) - s^4 d(x_{2m_{k+1}}, x_{2n_k})]$$

$$= \limsup_{k \to \infty} M_1(x_{2m_k}, x_{2n_{k-1}}) - s^4 \liminf_{k \to \infty} d(x_{m_k+1}, x_{2n_k}) \leq s\epsilon - s^4 \frac{\epsilon}{s},$$

a contradiction.

Therefore by Case (i) and Case (ii), we have $\{x_n\}$ is a b-Cauchy sequence in X. Since X is b-complete, there exists $x \in X$ such that $\lim x_n = u$.

Therefore $x = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} fx_{2n}$ and $x = \lim_{n \to \infty} x_{2n+2} = \lim_{n \to \infty} gx_{2n+1}$ so that $\lim_{n \to \infty} fx_{2n} = x = \lim_{n \to \infty} gx_{2n+1}.$ We assume that $f(x_n) = x$

We assume that f is b-continuous.

Since $x_{2n} \to x$ as $n \to \infty$, we have $fx_{2n} \to fx$ as $n \to \infty$. Now,

$$0 \le d(x, fx) \le s[d(x, fx_{2n}) + d(fx_{2n}, fx)] \to 0 \text{ as } n \to \infty.$$

Therefore x is a fixed point of f.

Hence by Proposition 3.1, x is a unique common fixed point of f and g.

Similarly, we can prove that x is a unique common fixed point of f and q whenever q is b-continuous.

Eventhough, the proof of the following theorem is similar to that of Theorem 3.3, we give its proof and show the importance of the rational term $\frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}$ in the inequality (2.2) (Example 4.2).

Theorem 3.4. Let (X,d) be a complete b-metric space with coefficient $s \geq 1$ and (f,q) be a Suzuki Z-contraction type (II) maps. If either f (or) q is b-continuous then f and g have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be arbitrary. Since $f(X) \subseteq X$ and $g(X) \subseteq X$, as in the proof of Theorem 3.3, there exists a sequence $\{x_n\}$ in X such that $fx_{2n} = x_{2n+1}, gx_{2n+1} =$ x_{2n+2} for $n = 0, 1, 2, \dots$

Without loss of generality, we assume that $d(x_n, x_{n+1}) > 0$ for all n.

Suppose n is even, n = 2m, (say), $m \in \mathbb{N}$.

Since $\frac{1}{2s} \min\{d(x_n, fx_n), d(x_{n+1}, gx_{n+1})\} = \frac{1}{2s} \min\{d(x_{2m}, fx_{2m}), d(x_{2m+1}, gx_{2m+1})\}$ $\leq d(x_{2m}, x_{2m+1})$, from (2.2), we have

$$\zeta(s^4d(fx_{2m}, gx_{2m+1}), M_2(x_{2m}, x_{2m+1})) \ge 0,$$
 (3.9)

where

where
$$M_{2}(x_{2m}, x_{2m+1}) = \max\{d(x_{2m}, x_{2m+1}), \frac{d(x_{2m+1}, gx_{2m+1})[1 + d(x_{2m}, fx_{2m})]}{1 + d(x_{2m}, x_{2m+1})}, \frac{d(x_{2m+1}, fx_{2m})[1 + d(x_{2m}, fx_{2m})]}{s^{2}(1 + d(x_{2m}, x_{2m+1}))}\}$$

$$= \max\{d(x_{2m}, x_{2m+1}), d(x_{2m+1}, x_{2m+2})\}.$$
If $d(x_{2m}, x_{2m+1}) \neq d(x_{2m}, x_{2m+1})$, then $M(x_{2m+1}, x_{2m+2}) \neq d(x_{2m+1}, x_{2m+2})$.

If $d(x_{2m}, x_{2m+1}) < d(x_{2m+1}, x_{2m+2})$ then $M_2(x_{2m}, x_{2m+1}) = d(x_{2m+1}, x_{2m+2})$.

Therefore from (3.9), we have

$$0 \le \zeta(s^4 d(x_{2m+1}, x_{2m+2}), M_2(x_{2m}, x_{2m+1}))$$

= $\zeta(s^4 d(x_{2m+1}, x_{2m+2}), d(x_{2m+1}, x_{2m+2}))$

$$< d(x_{2m+1}, x_{2m+2}) - s^4 d(x_{2m+1}, x_{2m+2}),$$

a contradiction.

Therefore
$$d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$$
 when n is even. (3.10)

Now, if n is odd, n = 2m + 1, (say), $m \in \mathbb{N}$.

Since

$$\frac{1}{2s} \min\{d(x_{n+1}, fx_{n+1}), d(x_n, gx_n)\} = \frac{1}{2s} \min\{d(x_{2m+2}, fx_{2m+2}), d(x_{2m+1}, gx_{2m+1})\}
\leq d(x_{2m+2}, x_{2m+1}) = d(x_{n+1}, x_n).$$

From (2.2), we have

$$\zeta(s^4d(fx_{2m+2}, gx_{2m+1}), M_2(x_{2m+2}, x_{2m+1})) \ge 0,$$
 (3.11)

where

$$M_{2}(x_{2m+2}, x_{2m+1}) = \max \left\{ d(x_{2m+2}, x_{2m+1}), \frac{d(x_{2m+1}, gx_{2m+1})[1 + d(x_{2m+2}, fx_{2m+2})]}{1 + d(x_{2m+2}, x_{2m+1})}, \frac{d(x_{2m+1}, fx_{2m+2})[1 + d(x_{2m+2}, fx_{2m+2})]}{s^{2}(1 + d(x_{2m+2}, x_{2m+1}))} \right\}$$

$$= \max \left\{ d(x_{2m+2}, x_{2m+1}), \frac{d(x_{2m+1}, x_{2m+2})[1 + d(x_{2m+2}, x_{2m+3})]}{1 + d(x_{2m+2}, x_{2m+1})}, \frac{d(x_{2m+1}, x_{2m+2})[1 + d(x_{2m+2}, x_{2m+3})]}{s^{2}(1 + d(x_{2m+2}, x_{2m+3}))} \right\}.$$
If $d(x_{2m+1}, x_{2m+1}) \in d(x_{2m+2}, x_{2m+3})$ then $M(x_{2m+2}, x_{2m+3}) = d(x_{2m+2}, x_{2m+3})$

If $d(x_{2m+2}, x_{2m+1}) < d(x_{2m+3}, x_{2m+2})$ then $M_2(x_{2m+2}, x_{2m+1}) = d(x_{2m+3}, x_{2m+2})$. Therefore from (3.11), we have

$$0 \le \zeta(s^4 d(x_{2m+3}, x_{2m+2}), M_2(x_{2m+2}, x_{2m+1}))$$

= $\zeta(s^4 d(x_{2m+3}, x_{2m+2}), d(x_{2m+3}, x_{2m+2}))$
< $d(x_{2m+3}, x_{2m+2}) - s^4 d(x_{2m+3}, x_{2m+2}),$

a contradiction.

Therefore
$$d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$$
 when n is odd. (3.12)

From (3.10) and (3.12), it follows that $\{d(x_n, x_{n+1})\}\$ is a decreasing sequence of nonnegative reals.

Thus there exists $r \ge 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$. Suppose that r > 0.

By using the condition (ζ_3) with $t_n = d(x_{n+1}, x_{n+2})$ and $s_n = d(x_n, x_{n+1})$, we have $0 \le \limsup \zeta(s^4 d(x_{n+1}, x_{n+2}), M_2(x_n, x_{n+1})) < 0$,

it is a contradiction.

Therefore r = 0.

i.e.,
$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
 (3.13)

We now prove that $\{x_n\}$ is a b-Cauchy sequence.

For this it is sufficient to show that $\{x_{2n}\}$ is a b-Cauchy sequence.

On the contrary suppose that $\{x_{2n}\}$ is not b-Cauchy. We now consider the following two cases.

Case (i): s = 1.

In this case, (X, d) is a metric space. Then by Lemma 1.5 there exist an $\epsilon > 0$ and

sequence of positive integers $\{2n_k\}$ and $\{2m_k\}$ with $2n_k > 2m_k \ge k$ such that $d(x_{2m_k}, x_{2n_k}) \ge \epsilon$ and $d(x_{2m_k}, x_{2n_k-2}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.5. Suppose that there exists a $k_1 \in \mathbb{N}$ with $k \ge k_1$ such that

$$\frac{1}{2}\min\{d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1})\} > d(x_{2m_k}, x_{2n_k-1}).$$
(3.14)

On taking limits as $k \to \infty$ in (3.14) and using (3.13), we get that $\epsilon \le 0$, a contradiction.

Therefore $\frac{1}{2}\min\{d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1})\} \le d(x_{2m_k}, x_{2n_k-1})$ and from (2.2), we have

$$\begin{split} \zeta(d(fx_{2m_k},gx_{2n_k-1}),M_2(x_{2m_k},x_{2n_k-1})) &\geq 0, \text{ where } \\ M_2(x_{2m_k},x_{2n_k-1}) &= \max\{d(x_{2m_k},x_{2n_k-1}),\frac{d(x_{2n_k-1},gx_{2n_k-1})[1+d(x_{2m_k},fx_{2m_k})]}{1+d(x_{2m_k},x_{2n_k-1})} \\ &\qquad \qquad \frac{d(x_{2n_k-1},fx_{2m_k})[1+d(x_{2m_k},fx_{2m_k})]}{(1+d(x_{2m_k},x_{2n_k-1}))} \big\} \\ &= \max\{d(x_{2m_k},x_{2n_k-1}),\frac{d(x_{2n_k-1},x_{2n_k})[1+d(x_{2m_k},x_{2m_k+1})]}{1+d(x_{2m_k},x_{2n_k-1})},\\ &\qquad \qquad \frac{d(x_{2n_k-1},x_{2m_k+1})[1+d(x_{2m_k},x_{2m_k+1})]}{(1+d(x_{2m_k},x_{2n_k-1}))} \big\}. \end{split}$$

On taking limits as $k \to \infty$ and using (3.13), we get that

$$\lim_{n \to \infty} M_2(x_{2m_k}, x_{2n_k - 1}) = \max\{\epsilon, 0, \frac{\epsilon}{1 + \epsilon}\} = \epsilon.$$

By using (ζ_3) with $t_n = d(x_{2m_k+1}, x_{2n_k})$ and $s_n = M_2(x_{2m_k}, x_{2n_k-1})$, we have $0 \le \limsup_{k \to \infty} \zeta(d(x_{2m_k+1}, x_{2n_k}), M_2(x_{2m_k}, x_{2n_k-1})) < 0$,

a contradiction.

Case (ii): s > 1.

In this case, by Lemma 1.6 there exist an $\epsilon > 0$ and sequence of positive integers $\{2n_k\}$ and $\{2m_k\}$ with $2n_k > 2m_k \geq k$ such that $d(x_{2m_k}, x_{2n_k}) \geq \epsilon$ and $d(x_{2m_k}, x_{2n_k-2}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.6.

Suppose that there exists a $k_1 \in \mathbb{N}$ with $k \geq k_1$ such that

$$\frac{1}{2s}\min\{d(x_{2m_k}, fx_{2m_k}), d(x_{2n_k-1}, gx_{2n_k-1})\} > d(x_{2m_k}, x_{2n_k-1}).$$
(3.15)

On letting limit superior as $k \to \infty$ in (3.15) and using (3.13), we get that $\epsilon \le 0$, a contradiction.

Therefore $\frac{1}{2s}\min\{d(x_{2m_k},fx_{2m_k}),d(x_{2n_k-1},gx_{2n_k-1})\} \le d(x_{2m_k},x_{2n_k-1})$ and from (2.2), we get

$$\zeta(s^4 d(fx_{2m_k}, gx_{2n_k-1}), M_2(x_{2m_k}, x_{2n_k-1})) \ge 0$$
(3.16)

where

$$M_2(x_{2m_k}, x_{2n_k-1}) = \max\{d(x_{2m_k}, x_{2n_k-1}), \frac{d(x_{2n_k-1}, gx_{2n_k-1})[1 + d(x_{2m_k}, fx_{2m_k})]}{1 + d(x_{2m_k}, x_{2n_k-1})},$$

$$\begin{split} &\frac{d(x_{2n_k-1},fx_{2m_k})[1+d(x_{2m_k},fx_{2m_k})]}{s^2(1+d(x_{2m_k},x_{2n_k-1}))} \Big\} \\ &= \max \Big\{ d\big(x_{2m_k},x_{2n_k-1}\big), \frac{d(x_{2n_k-1},x_{2n_k})[1+d(x_{2m_k},x_{2m_k+1})]}{1+d(x_{2m_k},x_{2n_k-1})}, \\ &\frac{d(x_{2n_k-1},x_{2m_k+1})[1+d(x_{2m_k},x_{2m_k+1})]}{s^2(1+d(x_{2m_k},x_{2n_k-1}))} \Big\}. \end{split}$$

On taking limit superior as $k \to \infty$ and using (3.13), we get

 $\limsup M_2(x_{2m_k}, x_{2n_k-1}) \le \max\{s^2\epsilon, 0, \frac{s^2\epsilon}{s+\epsilon}\} = s^2\epsilon.$

From the inequality (3.16), we have

$$\begin{split} 0 &\leq \limsup_{k \to \infty} \zeta(s^4 d(fx_{2m_k}, gx_{2n_k-1}), M_2(x_{2m_k}, x_{2n_k-1})) \\ &\leq \limsup_{k \to \infty} [M_2(x_{2m_k}, x_{2n_k-1}) - s^4 d(x_{2m_k+1}, x_{2n_k})] \\ &= \limsup_{k \to \infty} M_2(x_{2m_k}, x_{2n_k-1}) - s^4 \liminf_{k \to \infty} d(x_{2m_k+1}, x_{2n_k}) \\ &\leq s^2 \epsilon - s^4 \frac{\epsilon}{s}, \end{split}$$

a contradiction.

Therefore by Case (i) and Case (ii), we have $\{x_n\}$ is a b-Cauchy sequence in X.

Since
$$X$$
 is b -complete, there exists $x \in X$ such that $\lim_{n \to \infty} x_n = x$.
Therefore $x = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} fx_{2n}$ and $x = \lim_{n \to \infty} x_{2n+2} = \lim_{n \to \infty} gx_{2n+1}$ so that $\lim_{n \to \infty} fx_{2n} = x = \lim_{n \to \infty} gx_{2n+1}$.

We assume that f is b-continuous. Since $x_{2n} \to x$ as $n \to \infty$, we have $fx_{2n} \to fx$ as $n \to \infty$.

Hence,
$$0 \le d(x, fx) \le s[d(x, fx_{2n}) + d(fx_{2n}, fx)] \to 0$$
 as $n \to \infty$.

Therefore x is a fixed point of f.

Hence, by Proposition 3.2, it follows that x is a unique common fixed point of fand q.

Similarly, we can prove that x is a unique common fixed point of f and gwhenever g is b-continuous.

4. Examples and corollaries

The following is an example in support of Theorem 3.3.

Example 4.1. Let X = [0, 1]. We define $d: X \times X \to \mathbb{R}^+$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ \frac{11}{15} & \text{if } x, y \in [0, \frac{2}{3}], \\ \frac{23}{25} + \frac{x+y}{26} & \text{if } x, y \in (\frac{2}{3}, 1], \\ \frac{121}{250} & \text{otherwise.} \end{cases}$$

Then clearly (X, d) is a complete b-metric space with coefficient $s = \frac{51}{49}$. Here we observe that when $x = \frac{9}{10}, z = 1 \in (\frac{2}{3}, 1]$ and $y \in (0, \frac{2}{3}]$, we have $d(x, z) = \frac{23}{25} + \frac{x+z}{26} = \frac{1291}{1300} \nleq \frac{121}{125} = \frac{121}{250} + \frac{121}{250} = d(x, y) + d(y, z)$ so that d is not a metric.

We define $f, q: X \to X$ by

$$f(x) = \begin{cases} x & \text{if } x \in [0, \frac{2}{3}) \\ \frac{4}{3} - x & \text{if } x \in [\frac{2}{3}, 1] \end{cases} \text{ and } g(x) = \begin{cases} \frac{x+3}{4} & \text{if } x \in [0, \frac{2}{3}) \\ 1 - \frac{x}{2} & \text{if } x \in [\frac{2}{3}, 1]. \end{cases}$$

We define $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ by $\zeta(s,t) = \frac{99}{100}t - s, t \ge 0, s \ge 0$.

Then ζ is a simulation function. Without loss of generality, we assume that $x \geq y$.

Case (i): $x, y \in [0, \frac{2}{3})$.

Case (i):
$$x, y \in [0, \frac{2}{3})$$
.
 $\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = (\frac{49}{102})(\frac{121}{250}) \le \frac{11}{15} = d(x, y)$.
 $d(fx, gy) = \frac{121}{250}, d(x, y) = \frac{11}{15}, d(x, fx) = \frac{11}{15}, d(y, gy) = \frac{121}{250}, d(y, fx) = \frac{11}{15}, d(x, gy) = \frac{121}{250}$.

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy) + d(y,fx)}{2s}\}$$

$$= \max\{\frac{11}{15}, \frac{11}{15}, \frac{121}{250}, \frac{49[\frac{121}{250} + \frac{11}{15}]}{102}\} = \frac{11}{15}.$$

$$\zeta(s^4d(fx,gy),M_1(x,y)) = \frac{99}{100}M_1(x,y) - s^4d(fx,gy) = \frac{99}{100}(\frac{11}{15}) - (\frac{51}{49})^4(\frac{121}{250}) \ge 0.$$

Case (ii): $x, y \in (\frac{2}{3}, 1]$.

Case (ii):
$$x, y \in \binom{3}{3}, 1$$
:
$$\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = (\frac{49}{102})(\frac{121}{250}) \le \frac{23}{25} + \frac{x+y}{26} = d(x, y).$$

$$d(fx, gy) = \frac{11}{15}, d(x, y) = \frac{23}{25} + \frac{x+y}{26}, d(x, fx) = \frac{121}{250}, d(y, gy) = \frac{121}{250}, d(y, fx) = \frac{121}{250},$$

$$d(x, gy) = \frac{121}{250}.$$

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy) + d(y,fx)}{2s}\}$$

$$= \max\{\frac{23}{25} + \frac{x+y}{26}, d(x,fx) = \frac{121}{250}, d(y,gy) = \frac{121}{250}, \frac{49\left[\frac{121}{250} + \frac{121}{250}\right]}{102}\} = \frac{23}{25} + \frac{x+y}{26}.$$

We now consider

$$\zeta(s^4d(fx,gy),M_1(x,y)) = \frac{99}{100}M_1(x,y) - s^4d(fx,gy) = \frac{99}{100}(\frac{23}{25} + \frac{x+y}{26}) - (\frac{51}{49})^4(\frac{11}{15}) \ge 0.$$
 Case (iii): $x \in (\frac{2}{3},1], y \in [0,\frac{2}{3}].$

We now consider
$$\zeta(s^4d(fx,gy),M_1(x,y)) = \frac{99}{100}M_1(x,y) - s^4d(fx,gy) = \frac{99}{100}(\frac{23}{25} + \frac{x+y}{26}) - (\frac{51}{49})^4(\frac{11}{15}) \ge 0.$$
Case (iii): $x \in (\frac{2}{3},1], y \in [0,\frac{2}{3}].$

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} = (\frac{49}{102})(\frac{121}{250}) \le \frac{27}{10} = d(x,y).$$

$$d(fx,gy) = \frac{121}{250},d(x,y) = \frac{121}{250},d(x,fx) = \frac{121}{250},d(y,gy) = \frac{121}{250},d(y,fx) = \frac{11}{15},$$

$$d(x,gy) = \frac{23}{25} + \frac{x+y}{26}.$$

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy) + d(y,fx)}{2s}\}$$

$$= \max\{\frac{121}{250}, \frac{121}{250}, \frac{121}{250}, \frac{49\left[\frac{23}{25} + \frac{x+y}{26} + \frac{11}{15}\right]}{102}\} = \frac{49\left[\frac{23}{25} + \frac{x+y}{26} + \frac{11}{15}\right]}{102}.$$

Now we consider

$$\zeta(s^4 d(fx, gy), M_1(x, y)) = \frac{99}{100} M_1(x, y) - s^4 d(fx, gy) = \frac{99}{100} \left(\frac{49\left[\frac{23}{25} + \frac{x+y}{26} + \frac{11}{15}\right]}{102}\right) - \left(\frac{51}{49}\right)^4 \left(\frac{121}{250}\right) \ge 0.$$

Case (iv): $x = \frac{2}{3}, y \in [0, \frac{2}{3}).$

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} = 0 \le \frac{121}{250} = d(x,y)$$

Case (iv):
$$x = \frac{2}{3}, y \in [0, \frac{2}{3})$$
. $\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = 0 \le \frac{121}{250} = d(x, y)$. $d(fx, gy) = \frac{121}{250}, d(x, y) = \frac{121}{250}, d(x, fx) = 0, d(y, gy) = \frac{121}{250}, d(y, fx) = \frac{121}{250}, d(x, gy) = \frac{23}{25} + \frac{x+y}{26}$.

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy)+d(y,fx)}{2s}\}$$

$$= \max\{\frac{121}{250}, 0, \frac{121}{250}, \frac{49\left[\frac{23}{25} + \frac{x+y}{26} + \frac{121}{250}\right]}{102}\} = \frac{49\left[\frac{23}{25} + \frac{x+y}{26} + \frac{121}{250}\right]}{102}.$$

We now consider

We now consider
$$\zeta(s^4d(fx,gy),M_1(x,y)) = \frac{99}{100}M_1(x,y) - s^4d(fx,gy) = \frac{99}{100}(\frac{49[\frac{23}{25} + \frac{x+y}{26} + \frac{121}{250}]}{102}) - (\frac{51}{49})^4(\frac{121}{250}) \ge 0.$$

From all the above cases we conclude that (f,g) is a pair of Suzuki \mathcal{Z} -contraction type (I) maps.

Therefore f and g satisfy all the hypotheses of Theorem 3.3 and $\frac{2}{3}$ is the unique common fixed point of f and q.

The following is an example in support of Theorem 3.4.

Example 4.2. Let $X = \mathbb{R}^+$ and let $d: X \times X \to \mathbb{R}^+$ defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 4 & \text{if } x, y \in [0,1], \\ 5 + \frac{1}{x+y} & \text{if } x, y \in (1,\infty), \\ \frac{27}{10} & \text{otherwise.} \end{cases}$$

Then clearly (X,d) is a complete b-metric space with coefficient $s=\frac{489}{480}$.

We define
$$f, g: X \to X$$
 by $f(x) = \begin{cases} x^2 & \text{if } x \in [0, 1) \\ \frac{1}{x^2} & \text{if } x \in [1, \infty) \end{cases}$ and $g(x) = \begin{cases} 2x^2 + 2 & \text{if } x \in [0, 1) \\ \frac{x^2 + 1}{2} & \text{if } x \in [1, \infty). \end{cases}$

Clearly f is b-continuo

We define $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ by $\zeta(s,t) = \frac{99}{100}t - s, t \ge 0, s \ge 0$.

Then ζ is a simulation function. Without loss of generality, we assume that $x \geq y$. Case (i): $x, y \in [0, 1)$.

$$\begin{split} \frac{1}{2s} \min \{ d(x, fx), d(y, gy) \} &= (\frac{480}{978})(\frac{27}{10}) \leq 4 = d(x, y). \\ d(fx, gy) &= \frac{27}{10}, d(x, fx) = 4, d(y, gy) = \frac{27}{10}, d(x, gy) = \frac{27}{10}, d(y, fx) = 4. \\ M_2(x, y) &= \max \{ d(x, y), \frac{d(y, gy)[1 + d(x, fx)]}{1 + d(x, y)}, \frac{d(y, fx)[1 + d(x, fx)]}{s^2(1 + d(x, y))} \} \\ &= \max \{ 4, \frac{27}{10}, \frac{4}{(\frac{480}{480})^2} \} = 4. \end{split}$$

Now we consider

$$\zeta(s^4 d(fx, gy), M_2(x, y)) = \frac{99}{100} M_2(x, y) - s^4 d(fx, gy) = \frac{99}{100} (4) - (\frac{489}{480})^4 (\frac{27}{10}) \ge 0.$$

Case (ii): $x, y \in (1, \infty)$.

$$\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = \left(\frac{480}{978}\right) \left(\frac{27}{10}\right) \le 5 + \frac{1}{x+y} = d(x, y).$$

$$d(fx, gy) = \frac{27}{10}, d(x, y) = 5 + \frac{1}{x+y}, d(x, fx) = \frac{27}{10}, d(y, gy) = 5 + \frac{1}{x+y}, d(y, fx) = \frac{27}{10},$$

$$d(x, gy) = 5 + \frac{1}{x+y}.$$

$$M_2(x,y) = \max\{d(x,y), \frac{d(y,gy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\}$$

$$= \max\{5 + \frac{1}{x+y}, \frac{(5+\frac{1}{x+y})[1+\frac{27}{10}]}{6+\frac{1}{x+y}}, \frac{\frac{27}{10}[1+\frac{27}{10}]}{(\frac{480}{480})^2(6+\frac{1}{x+y})}\} = 5 + \frac{1}{x+y}.$$

We now consider

$$\zeta(s^4d(fx,gy),M_2(x,y)) = \frac{99}{100}M_2(x,y) - s^4d(fx,gy) = \frac{99}{100}(5 + \frac{1}{x+y}) - (\frac{489}{480})^4(\frac{27}{10}) \ge 0.$$

Case (iii):
$$x \in (1, \infty), y \in [0, 1)$$
.
$$\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = (\frac{480}{978})(\frac{27}{10}) \le \frac{27}{10} = d(x, y).$$

$$d(fx, gy) = \frac{27}{10}, d(x, y) = \frac{27}{10}, d(x, fx) = \frac{27}{10}, d(y, gy) = \frac{27}{10}, d(y, fx) = 4, d(x, gy) = 5 + \frac{1}{x+y}.$$

$$M_2(x,y) = \max\{d(x,y), \frac{d(y,gy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\}$$
$$= \max\{\frac{27}{10}, \frac{\frac{27}{10}[1+\frac{27}{10}]}{1+\frac{27}{10}}, \frac{4[1+\frac{27}{10}]}{(\frac{489}{480})^2(1+\frac{27}{10})}\} = \frac{4}{(\frac{489}{480})^2}.$$

We now consider

$$\zeta(s^4d(fx,gy),M_2(x,y)) = \frac{99}{100}M_2(x,y) - s^4d(fx,gy) = \frac{99}{100}(\frac{4}{(\frac{489}{480})^2}) - (\frac{489}{480})^4(\frac{27}{10}) \ge 0.$$

Case (iv): $x = 1, y \in [0, 1)$.

Case (iv):
$$x = 1, y \in [0, 1)$$
.
$$\frac{1}{2s} \min\{d(x, fx), d(y, gy)\} = 0 \le 4 = d(x, y).$$

$$d(fx, gy) = \frac{27}{10}, d(x, y) = 4, d(x, fx) = 0, d(y, gy) = \frac{27}{10}, d(y, fx) = 4, d(x, gy) = \frac{27}{10}.$$

$$M_2(x, y) = \max\{d(x, y), \frac{d(y, gy)[1 + d(x, fx)]}{1 + d(x, y)}, \frac{d(y, fx)[1 + d(x, fx)]}{s^2(1 + d(x, y))}\}$$

$$= \max\{4, \frac{27}{50}, \frac{4}{\frac{489}{180}}\} = 4.$$

Now we consider

$$\zeta(s^4d(fx,gy),M_2(x,y)) = \frac{99}{100}M_2(x,y) - s^4d(fx,gy) = \frac{99}{100}(4) - (\frac{489}{480})^4(\frac{27}{10}) \ge 0.$$

From all the above cases (f, g) is a pair of Suzuki \mathcal{Z} -contraction type (II) maps. Therefore f and g satisfy all the hypotheses of Theorem 3.4 and 1 is the unique common fixed point of f and q.

Here we observe from Case (iii) that, if we omit the term $\frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}$ from the inequality (2.2), then the inequality (2.2) fails to hold.

For, we choose
$$x=2,y=\frac{1}{2}$$
. In this case
$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\}=(\frac{480}{978})\min\{d(2,\frac{1}{4}),d(\frac{1}{2},\frac{5}{2})\}=(\frac{480}{978})\min\{\frac{27}{10},\frac{27}{10}\}\\=(\frac{480}{978})(\frac{27}{10})\leq\frac{27}{10}=d(x,y).$$

Here

$$\begin{aligned} M_2(x,y) &= \max\{d(x,y), \frac{d(y,gy)[1+d(x,fx)]}{1+d(x,y)}\} = \max\{d(2,\frac{1}{2}), \frac{d(\frac{1}{2},\frac{5}{2})[1+d(2,\frac{1}{4})]}{1+d(2,\frac{1}{2})}\} \\ &= \max\{\frac{27}{10}, \frac{\frac{27}{10}[1+\frac{27}{10}]}{1+\frac{27}{10}}\} = \frac{27}{10} \text{ and } \end{aligned}$$

$$d(fx, fy) = d(\frac{1}{4}, 4) = \frac{27}{10}.$$

Now

$$\zeta(s^4d(fx,gy),M_2(x,y)) = kM_2(x,y) - s^4d(fx,gy) = k(\tfrac{27}{10}) - (\tfrac{489}{480})^4(\tfrac{27}{10}) \ngeq 0 \text{ for any } k \in [0,1).$$

Hence the term $\frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}$ plays an important role in the inequality (2.2).

Corollary 4.3. Let (X,d) be a b-metric space with coefficient $s \geq 1$. Let f,g: $X \to X$ be two selfmaps on X. Assume that there exist two continuous functions $\psi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\varphi(t) < t \le \psi(t)$ for all t > 0 and $\varphi(t) = \psi(t) = 0$ if and only if t = 0 such that

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} \le d(x,y) \text{ implies that } \psi(s^4d(fx,gy)) \le \varphi(M_1(x,y))$$
(4.1)

for all $x, y \in X$, where $M_1(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{2s}\}$. If either f (or) g is b-continuous then f and g have a unique common fixed point in X.

Proof. We choose $\zeta(t,s) = \varphi(s) - \psi(t)$ for all $t,s \in \mathbb{R}^+$. Then ζ is a simulation function. Also, the inequality (4.1) implies the inequality (2.1) holds with this simulation function ζ . Hence by Theorem 3.3, the conclusion of this corollary follows.

Similar to Corollary 4.3, we have the following corollary to Theorem 3.4.

Corollary 4.4. Let (X,d) be a b-metric space with coefficient $s \ge 1$. Let $f,g: X \to X$ be two selfmaps on X. Assume that there exist two continuous functions $\psi, \varphi: \mathbb{R}^+ \to \mathbb{R}^+$ with $\varphi(t) < t \le \psi(t)$ for all t > 0 and $\varphi(t) = \psi(t) = 0$ if and only if t = 0 such that

$$\frac{1}{2s}\min\{d(x,fx),d(y,gy)\} \le d(x,y) \text{ implies that } \psi(s^4d(fx,gy)) \le \varphi(M_2(x,y))$$

for all $x, y \in X$, where $M_2(x, y) = \max\{d(x, y), \frac{d(y, gy)[1 + d(x, fx)]}{1 + d(x, y)}, \frac{d(y, fx)[1 + d(x, gy)]}{s^2(1 + d(x, y))}\}$. Then f and g have a unique common fixed point in X, provided f (or) g is b-continuous.

By choosing g=f in Theorem 3.3 and Theorem 3.4, we have the following corollaries.

Corollary 4.5. [4] Let (X,d) be a complete b-metric space with coefficient $s \ge 1$ and $f: X \to X$ be a Suzuki \mathbb{Z} -contraction type (I) map. Then f has a unique fixed point in X.

Corollary 4.6. [4] Let (X,d) be a complete b-metric space with coefficient $s \ge 1$ and $f: X \to X$ be a Suzuki \mathcal{Z} -contraction type (II) map. Then f has a unique fixed point in X.

5. Conclusion

In this paper, we introduced Suzuki \mathcal{Z} -contraction type (I) maps, Suzuki \mathcal{Z} -contraction type (II) maps, for a pair of selfmaps in b-metric spaces and proved the existence and uniqueness of common fixed points. Our results extend/generalize the known results that are available in the literature. We provided examples in support of our results and some corollaries to our results are presented.

References

- [1] Aghajani A., Abbas M. and Roshan J. R., Common fixed point of generalized weak contractive mappings in partially ordered *b*-metric spaces, Math. Slovaca, 64(4) (2014), 941-960.
- [2] Aydi H., Bota M-F., Karapınar E. and Mitrović S., A fixed point theorem for set-valued quasi contractions in b-metric spaces, Fixed Point Theory Appl., 88 (2012), 8 pages.
- [3] Babu G. V. R., Dula T. M. and Kumar P. S., A common fixed point theorem in b-metric spaces via simulation function, J. Fixed Point Theory, 12 (2018), 15 pages.
- [4] Babu G. V. R. and Babu D. Ratna, Fixed points of Suzuki \mathcal{Z} -contraction type maps in *b*-metric spaces, Advances in the Theory of Nonlinear Anal. Appl., 4(1) (2020), 14-28.
- [5] Babu G. V. R. and Sailaja P. D., A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai J. Math., 9(1) (2011), 1-10.
- [6] Bakhtin I. A., The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26-37.
- [7] Boriceanu M., Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(3) (2009), 285-301.
- [8] Boriceanu M., Bota M-F. and Petrusel A., Multivalued fractals in *b*-metric spaces, Cent. Eur. J. Math., 8(2) (2010), 367-377.
- [9] Bourbaki N., Topologie Generale, Herman: Paris, France, 1974.
- [10] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
- [11] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico (DellUniv. di Modena), 46 (1998), 263-276.
- [12] Dass B. K., Gupta S., An extension of Banach contraction principle through rational expressions, Indian J. Pure and Appl. Math., 6 (1975), 1455-1458.

- [13] Gunaseelan M., Mishra L. N. and Mishra V. N., Generalized coupled fixed point results on complex partial metric space using contractive condition, J. Nonlinear Modeling Anal., 3(1) (2021), 97-108.
- [14] Hussain N., Paraneh V., Roshan J. R. and Kadelburg Z., Fixed points of cycle weakly (ψ, φ, L, A, B) -contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013 (2013), 256, 18 pages.
- [15] Hussain N., Roshan J. R., Parvaneh V. and Abbas M., Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013 (2013), 486, 21 pages.
- [16] Khojasteh F., Shukla S. and Redenović S., A new approach to the study fixed point theorems via simulation functions, Filomat, 29(6) (2015), 1189-1194.
- [17] Kumam P., Gopal D. and Budhia L., A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8(1) (2017), 113-119.
- [18] Kumam P. and Sintunavarat W., The existence of fixed point theorems for partial q-set valued quasi-contractions in b-metric spaces and related results, Fixed Point Theory Appl., 2014 (2014): 226, 20 pages.
- [19] Mishra L. N., Dewangan V., Mishra V. N. and Karateke S., Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, J. Math. Computer Sci., 22(2) (2021), 97-109.
- [20] Mishra L. N., Tiwari S. K. and Mishra V. N., Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, J. Appl. Anal. Comput., 5(4) (2015), 600-612.
- [21] Olgun M., Bicer O. and Alyildiz T., A new aspect to Picard operators with simulation functions, Turk. J. Math., 40 (2016), 832-837.
- [22] Padcharoen A., Kumam P., Saipara P. and Chaipunya P., Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Mathematics, 42(3) (2018), 419-430.
- [23] Roshan J. R., Parvaneh V. and Kadelburg Z., Common fixed point theorems for weakly isotone increasing mappings in ordered *b*-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229-245.

- [24] Sanatee A. G., Iranmanesh M., Mishra L. N. and Mishra V. N., Generalized 2-proximal *C*-contraction mappings in complete ordered 2-metric space and their best proximity points, SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A: Appl. Math. Inform. Mech., 12(1) (2020), 1-11.
- [25] Sharma N., Mishra L. N., Mishra V. N. and Pandey S., Solution of Delay Differential equation via N_1^v iteration algorithm, European J. Pure Appl. Math., 13(5) (2020), 1110-1130.
- [26] Sharma N., Mishra L. N., Mishra V. N. and Almusawa H., Endpoint approximation of standard three-step multi-valued iteration algorithm for nonexpansive mappings, Appl. Math. Inform. Sci., 15(1) (2021), 73-81.
- [27] Shatanawi W., Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, J. Math. Anal., 7(4) (2016), 1-12.
- [28] Suzuki T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.