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1. Introduction
Nonlinear analysis plays an important role in many branches of Applied Sci-

ences, for latest works, we refer [13, 20, 24, 25, 26]. Particularly, fixed point theory
is a part of nonlinear analysis and its development depends on the generalization
of contraction conditions or/and generalization of ambient spaces of the operator
under consideration. In 1975, Dass and Gupta [12] established fixed point results
using contraction condition involving rational expressions and proved the existence
of fixed points in complete metric spaces. In 2008, Suzuki [28] proved two fixed
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point theorems, one of which is a new type of generalization of the Banach con-
traction principle and does characterize the metric completeness.

The main idea of b-metric was initiated from the works of Bourbaki [9] and
Bakhtin [6]. The concept of b-metric space or metric type space was introduced
by Czerwik [10] as a generalization of metric space. Afterwards, many authors
studied fixed point theorems for single-valued and multi-valued mappings in b-
metric spaces, for more information we refer [2, 7, 8, 11, 15, 18, 19, 27].

In this paper, we denote R+ = [0,∞) and N is the set of all natural numbers.

Definition 1.1. [10] Let X be a non-empty set. A function d : X × X → R+ is
said to be a b-metric if the following conditions are satisfied: for any x, y, z ∈ X;

(i) 0 ≤ d(x, y) and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) there exists s ≥ 1 such that d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space with coefficient s.
Every metric space is a b-metric space with s = 1. In general, every b-metric

space is not a metric space(Example 4.3, [4]).

Definition 1.2. [8] Let (X, d) be a b-metric space.

(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such that
d(xn, x)→ 0 as n→∞. In this case, we write lim

n→∞
xn = x and x is unique.

(ii) A sequence {xn} in X is called b-Cauchy if d(xn, xm)→ 0 as n,m→∞.

(iii) A b-metric space (X, d) is said to be a complete b-metric space if every b-
Cauchy sequence in X is b-convergent in X.

In general, a b-metric is not necessarily continuous.

Example 1.3. [14] Let X = N ∪ {∞}. We define a mapping d : X ×X → [0,∞)
as follows:

d(m,n) =


0 if m = n,

| 1
m
− 1

n
| if one of m,n is even and the other is even or ∞,

5 if one of m,n is odd and the other is odd or ∞,
2 otherwise.

Then (X, d) is a b-metric space with coefficient s = 5
2
.

Definition 1.4. [8] Let (X, dX) and (Y, dY ) be two b-metric spaces. A function
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f : X → Y is a b-continuous at a point x ∈ X, if it is b-sequentially continuous at
x. i.e., whenever {xn} is b-convergent to x, fxn is b-convergent to fx.

The following lemmas are useful in proving our main results.

Lemma 1.5. [5] Suppose (X, d) is a metric space. Let {xn} be a sequence in X
such that d(xn, xn+1)→ 0 as n→∞. If {xn} is a not Cauchy sequence then there
exist an ε > 0 and sequences of positive integers {mk} and {nk} with nk > mk ≥ k
such that d(xmk

, xnk
) ≥ ε. For each k > 0, corresponding to mk, we can choose nk

to be the smallest positive integer such that d(xmk
, xnk

) ≥ ε, d(xmk
, xnk−1) < ε and

(i) lim
k→∞

d(xmk
, xnk

) = ε (ii) lim
k→∞

d(xnk−1, xmk
) = ε

(iii) lim
k→∞

d(xmk+1, xnk
) = ε and (iv) lim

k→∞
d(xmk+1, xnk−1) = ε.

Lemma 1.6. [23] Suppose (X, d) is a b-metric space with coefficient s ≥ 1 and
{xn} be a sequence in X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is a not
Cauchy sequence then there exist an ε > 0 and sequences of positive integers {mk}
and {nk} with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε. For each k > 0, cor-

responding to mk, we can choose nk to be the smallest positive integer such that
d(xmk

, xnk
) ≥ ε, d(xmk

, xnk−1) < ε and
(i) ε ≤ lim inf

k→∞
d(xmk

, xnk
) ≤ lim sup

k→∞
d(xmk

, xnk
) ≤ sε

(ii) ε
s
≤ lim inf

k→∞
d(xmk+1, xnk

) ≤ lim sup
k→∞

d(xmk+1, xnk
) ≤ s2ε

(iii) ε
s
≤ lim inf

k→∞
d(xmk

, xnk+1) ≤ lim sup
k→∞

d(xmk
, xnk+1) ≤ s2ε

(iv) ε
s2
≤ lim inf

k→∞
d(xmk+1, xnk+1) ≤ lim sup

k→∞
d(xmk+1, xnk+1) ≤ s3ε.

Lemma 1.7. [1] Let (X, d) be a b-metric space with coefficient s ≥ 1. Suppose
that {xn} and {yn} are b-convergent to x and y respectively, then we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover for each z ∈ X
we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z)

.

In 2015, Khojasteh, Shukla and Radenović [8] introduced simulation function
and defined Z-contraction with respect to a simulation function.

Definition 1.8. [16] A simulation function is a mapping ζ : R+×R+ → (−∞,∞)
satisfying the following conditions:
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(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t for all s, t > 0;

(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn = l ∈
(0,∞) then
lim sup
n→∞

ζ(tn, sn) < 0.

Remark 1.9. [3] Let ζ be a simulation function. If {tn}, {sn} are sequences in
(0,∞) such that lim

n→∞
tn = lim

n→∞
sn = l ∈ (0,∞), then lim sup

n→∞
ζ(ktn, sn) < 0 for any

k > 1.
The following are examples of simulation functions.

Example 1.10. [3] Let ζ : R+ × R+ → (−∞,∞) be defined by

(i) ζ(t, s) = λs− t for all t, s ∈ R+, where λ ∈ [0, 1);

(ii) ζ(t, s) = s
1+s
− t for all s, t ∈ R+;

(iii) ζ(t, s) = s− kt for all t, s ∈ R+, where k > 1;

(iv) ζ(t, s) = 1
1+s
− (1 + t) for all s, t ∈ R+;

(v) ζ(t, s) = 1
k+s
− t for all s, t ∈ R+ where k > 1.

Definition 1.11 [16] Let (X, d) be a metric space and f : X → X be a selfmap of
X. We say that f is a Z-contraction with respect to ζ, if there exists a simulation
function ζ such that

ζ(d(fx, fy), d(x, y)) ≥ 0

for all x, y ∈ X.

Theorem 1.12. [16] Let (X, d) be a complete metric space and f : X → X be a Z-
contraction with respect to a certain simulation function ζ, then for every x0 ∈ X,
the Picard sequence {fnx0} converges in X and lim

n→∞
fnx0 = u(say) in X and u is

the unique fixed point of f in X.
Recently, Olgun, Bicer and Alyildiz [21] proved the following result in complete

metric spaces.

Theorem 1.13. [21] Let (X, d) be a complete metric space and f : X → X be a
selfmap on X. If there exists a simulation function ζ such that

ζ(d(fx, fy),M(x, y)) ≥ 0
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for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)
2

},
then for every x0 ∈ X, the Picard sequence {fnx0} converges in X and lim

n→∞
fnx0 =

u (say) in X and u is the unique fixed point of f in X.
In 2018, Babu, Dula and Kumar [3] extended Theorem 1.13 of [21] to a pair of

selpmaps in the setting of b-metric spaces as follows.

Theorem 1.14. [3] Let (X, d) be a complete b-metric space with coefficient s ≥ 1
and f, g : X → X be a selfmaps on X. If there exists a simulation function ζ such
that

ζ(s4d(fx, gy),M(x, y)) ≥ 0

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

},
then f and g have a unique common fixed point in X, provided either f or g is
b-continuous.

The following theorem is due to Kumam, Gopal and Budhia [17].

Theorem 1.15. [17] Let (X, d) be a complete metric space and f : X → X be a
selfmap on X. If there exists a simulation function ζ such that

1

2
d(x, fx) < d(x, y) =⇒ ζ(d(fx, fy), d(x, y)) ≥ 0

for all x, y ∈ X, then for every x0 ∈ X, the Picard sequence {xn}, where xn =
fxn−1 for all n ∈ N converges to the unique fixed point of f .

In 2018, Padcharoen, Kumam, Saipara and Chaipunya [22], proved the following
theorem in complete metric spaces.

Theorem 1.16. [22] Let (X, d) be a complete metric space and f : X → X be a
selfmap on X. If there exists a simulation function ζ such that

1

2
d(x, fx) < d(x, y) =⇒ ζ(d(fx, fy),M(x, y)) ≥ 0

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)
2

},
then for every x0 ∈ X, the Picard sequence {xn}, where xn = fxn−1 for all n ∈ N
converges to the unique fixed point of f .

Recently, the authors of the present paper, extended the results, namely The-
orem 1.15 and Theorem 1.16 to b-metric spaces [4]. Motivated by these works, we
extend Theorem 1.15 and Theorem 1.16 to a pair of maps in b-metric spaces.

In Section 2, we introduce Suzuki Z-contraction type (I) maps, Suzuki Z-
contraction type (II) maps in b-metric spaces for a pair of selfmaps and provide
examples. In Section 3, we prove the existence and uniqueness of common fixed
points of Suzuki Z-contraction type (I) and type (II) maps. In Section 4, we draw
some corollaries to our results and provide examples in support of our results.
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2. Suzuki Z-contraction type maps

In this section, we introduce Suzuki Z-contraction type (I) maps and Suzuki
Z-contraction type (II) maps for a pair of selfmaps in b-metric spaces.

Definition 2.1. Let (X, d) be a b-metric space with coefficient s ≥ 1 and f, g :
X → X be selfmaps on X. We say that (f, g) is a Suzuki Z-contraction type (I)
maps, if there exists a simulation function ζ such that

1

2s
min{d(x, fx), d(y, gy)} ≤ d(x, y) implies that ζ(s4d(fx, gy),M1(x, y)) ≥ 0

(2.1)

for all x, y ∈ X, where M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}.
Example 2.2. Let X = (0, 1) and let d : X ×X → R+ defined by

d(x, y) =

{
0 if x = y

(x+ y)2 if x 6= y.
Then clearly (X, d) is a b-metric space with coefficient s = 2.

We define f, g : X → X by f(x) = x(5+x)
256

and g(x) = x
16(1+x)

.

We define ζ : R+ × R+ → (−∞,∞) by ζ(t, s) = 1
4
s− t.

Without loss of generality, we assume that x ≤ y.
We have 1

2s
min{d(x, fx), d(y, gy)} = 1

4
min{(x+x(5+x)

256
)2, (y+ y

16(1+y)
)2} ≤ (x+y)2 =

d(x, y)

M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}

= max{(x+ y)2, (x+ x(5+x)
256

)2, (y + y
16(1+y)

)2,
(x+ y

16(1+y)
)2+(y+

x(5+x)
256

)2

4
}.

Now we consider
s4d(fx, gy) = 16(x(5+x)

256
+ y

16(1+y)
)2 = 1

16
(x(5+x)

16
+ y

(1+y)
)2 ≤ 1

16
(y(5+y)

16
+ y

(1+y)
)2≤

1
16

(y + y
(1+y)

)2 ≤ 1
4
(x+ y)2 = 1

4
d(x, y) ≤ 1

4
M1(x, y).

Therefore the pair (f, g) is a Suzuki Z-contraction type (I) maps.

Definition 2.3. Let (X, d) be a b-metric space with coefficient s ≥ 1 and f, g :
X → X be selfmaps on X. We say that (f, g) is a Suzuki Z-contraction type (II)
maps, if there exists a simulation function ζ such that

1

2s
min{d(x, fx), d(y, gy)} ≤ d(x, y) implies that ζ(s4d(fx, gy),M2(x, y)) ≥ 0

(2.2)

for all x, y ∈ X, where M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}.

Example 2.4. Let X = R+ and let d be defined as in Example 2.2.
We define f, g : X → X by
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f(x) =

{
x2

256
if x ∈ [0, 1)

1
16

if x ∈ [1,∞)
and g(x) =

{
x(1+x)
512

if x ∈ [0, 1)
1
32

if x ∈ [1,∞).
.

We define ζ : R+ × R+ → (−∞,∞) by ζ(t, s) = 1
4
s− t.

Without loss of generality, we assume that y ≤ x.
Case (i): x, y ∈ [0, 1).

We have 1
2s

min{d(x, fx), d(y, gy)} = 1
4

min{(x+ x2

256
)2, (y + y(1+y)

512
)2} ≤ (x+ y)2 =

d(x, y).

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}

= max{(x+ y)2,
(y+

y(1+y)
512

)2[1+(x+ x2

256
)2]

1+(x+y)2
,
(y+ x2

256
)2[1+(x+ x2

256
)2]

4(1+(x+y)2)
}.

Now we consider
s4d(fx, gy) = 16( x

2

256
+ y(1+y)

512
)2 = 1

16
(x

2

16
+ y(1+y)

32
)2 ≤ 1

16
(x

2

16
+ x)2

≤ 1
4
(x+ y)2 = 1

4
d(x, y) ≤ 1

4
M2(x, y)

Case (ii): x, y ∈ [1,∞).
We have 1

2s
min{d(x, fx), d(y, gy)} = 1

4
min{(x+ 1

16
)2, (y+ 1

32
)2} ≤ (x+y)2 = d(x, y).

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}

= max{(x+ y)2,
(y+ 1

32
)2[1+(x+ 1

16
)2]

1+(x+y)2
,
(y+ 1

16
)2[1+(x+ 1

16
)2]

4(1+(x+y)2)
}.

Now we consider
s4d(fx, gy) = 16( 1

16
+ 1

32
)2 = 1

4
( 9
16

) ≤ 1
4
(x+ y)2 = 1

4
d(x, y) ≤ 1

4
M2(x, y).

Case (iii): x ∈ [1,∞), y ∈ [0, 1).

We have 1
2s

min{d(x, fx), d(y, gy)} = 1
4

min{(x + 1
16

)2, (y + y(1+y)
512

)2} ≤ (x + y)2 =
d(x, y).

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}

= max{(x+ y)2,
(y+

y(1+y)
512

)2[1+(x+ 1
16

)2]

1+(x+y)2
,
(y+ 1

16
)2[1+(x+ 1

16
)2]

4(1+(x+y)2)
}.

Now we consider
s4d(fx, gy) = 16( 1

16
+ y(1+y)

512
)2 = 1

16
(1+ y(1+y)

32
)2 ≤ 1

4
(x+y)2 = 1

4
d(x, y) ≤ 1

4
M2(x, y).

Therefore from all the above cases we conclude that the pair (f, g) is a Suzuki
Z-contraction type (II) maps.

Remark 2.5. It is clear from the definition of simulation function that ζ(t, s) < 0
for all t ≥ s > 0. Therefore

(i) if the pair (f, g) satisfies (2.1), then

1

2s
min{d(x, fx), d(y, gy)} ≤ d(x, y) implies that s4d(fx, gy) < M1(x, y),

for all x, y ∈ X; and
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(ii) if the pair (f, g) satisfies (2.2), then

1

2s
min{d(x, fx), d(y, gy)} ≤ d(x, y) implies that s4d(fx, gy) < M2(x, y),

for all x, y ∈ X.

3. Main Results
Proposition 3.1. Let (X, d) be a b-metric space with coefficient s ≥ 1 and f, g :
X → X be two selfmaps. Assume that the pair (f, g) is a Suzuki Z-contraction
type (I ) maps. Then u is a fixed point of f if and only if u is a fixed point of g.
Moreover, in this case u is unique.
Proof. Let u be a fixed point of f . i.e., fu = u.
Suppose that gu 6= u.
We have
1
2s

min{d(u, fu), d(u, gu)} = 1
2s

min{d(u, u), d(u, gu)} = 0 = d(u, u)
and hence from the inequality (2.1), we get
ζ(s4d(fu, gu),M1(u, u)) ≥ 0, where

M1(u, u) = max{d(u, u), d(u, fu), d(u, gu), d(u,gu)+d(u,fu)
2s

} = d(u, gu).
By using (ζ2), we have
0 ≤ ζ(s4d(u, gu),M1(u, u)) < M1(u, u)− s4d(u, gu) = d(u, gu)− s4d(u, gu),
a contradiction.
Hence gu = u, so that u is a common fixed point of f and g.
Similarly, it is easy to see that if u is a fixed point of g then u is a fixed point of f
also.
Suppose u and v are two common fixed points of f and g with u 6= v.
Since 1

2s
min{d(u, fu), d(v, gv)} ≤ d(u, v) so that from the inequality (2.1), we get

ζ(s4d(fu, gv),M1(u, v)) ≥ 0, where

M1(u, v) = max{d(u, v), d(u, fu), d(v, gv), d(u,gv)+d(v,fu)
2s

} = d(u, v).
By using (ζ2), we have
0 ≤ ζ(s4d(u, v),M1(u, v)) < M1(u, v)− s4d(u, v) = d(u, v)− s4d(u, v),
a contradiction.
Therefore u = v. Hence f and g have a unique common fixed point in X.

Proposition 3.2. Let (X, d) be a b-metric space with coefficient s ≥ 1 and f, g :
X → X be two selfmaps. Assume that the pair (f, g) is a Suzuki Z-contraction
type (II ) maps. Then u is a fixed point of f if and only if u is a fixed point of g.
Moreover, in this case u is unique.
Proof. Follows as on the similar lines of Proposition 3.1 and hence we omit the
proof.
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Theorem 3.3. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and
(f, g) be a Suzuki Z-contraction type (I ) maps. If either f (or) g is b-continuous
then f and g have a unique common fixed point in X.
Proof. Let x0 ∈ X be arbitrary. Since f(X) ⊆ X and g(X) ⊆ X, there exist
x1, x2 ∈ X such that fx0 = x1 and gx1 = x2. Similarly there exist x3, x4 ∈ X such
that fx2 = x3 and gx3 = x4.
In general, we construct a sequence {xn} in X by fx2n = x2n+1, gx2n+1 = x2n+2 for
n = 0, 1, 2, . . ..
Suppose x2n = x2n+1 for some n, then x2n = fx2n so that x2n is a fixed point of f .
Hence by Proposition 3.1, we have x2n is a fixed point of g also so that x2n is a
common fixed point of f and g.
Similarly, if x2n+1 = x2n+2 for some n. Then x2n+1 is a common fixed point of f
and g.
Hence without loss of generality, we assume that xn 6= xn+1 for all n.
Suppose n is even. Then n = 2m,m ∈ N. Since
1
2s

min{d(xn, fxn), d(xn+1, gxn+1)} = 1
2s

min{d(x2m, fx2m), d(x2m+1, gx2m+1)} ≤
d(x2m, x2m+1), it follows from (2.1) that

ζ(s4d(fx2m, gx2m+1),M1(x2m, x2m+1)) ≥ 0 (3.1)

where
M1(x2m, x2m+1) = max{d(x2m, x2m+1), d(x2m, fx2m), d(x2m+1, gx2m+1),

1
2s

[d(x2m, gx2m+1) + d(x2m+1, fx2m)]}
= max{d(x2m, x2m+1), d(x2m, x2m+1), d(x2m+1, x2m+2),

d(x2m,x2m+2)
2s

}
= max{d(x2m, x2m+1), d(x2m+1, x2m+2)}.

If d(x2m, x2m+1) < d(x2m+1, x2m+2) then M1(x2m, x2m+1) = d(x2m+1, x2m+2).
Therefore, from (3.1), we have
0 ≤ ζ(s4d(x2m+1, x2m+2),M1(x2m, x2m+1))

= ζ(s4d(x2m+1, x2m+2), d(x2m+1, x2m+2))
< d(x2m+1, x2m+2)− s4d(x2m+1, x2m+2),

a contradiction.
Therefore d(xn, xn+1) ≥ d(xn+1, xn+2) when n is even. (3.2)
Now, if n is odd, n = 2m+ 1, (say), m ∈ N.
Since
1
2s

min{d(xn+1, fxn+1), d(xn, gxn)} = 1
2s

min{d(x2m+2, fx2m+2), d(x2m+1, gx2m+1)}
≤ d(x2m+2, x2m+1), from (2.1), we have

ζ(s4d(fx2m+2, gx2m+1),M1(x2m+2, x2m+1)) ≥ 0, (3.3)

where
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M1(x2m+2, x2m+1) = max{d(x2m+2, x2m+1), d(x2m+2, fx2m+2), d(x2m+1, gx2m+1),
1
2s

[d(x2m+2, gx2m+1) + d(x2m+1, fx2m+2)]}
= max{d(x2m+2, x2m+1), d(x2m+2, x2m+3), d(x2m+1, x2m+2),

d(x2m+1,x2m+3)
2s

}
= max{d(x2m+2, x2m+1), d(x2m+2, x2m+3)}.

If d(x2m+2, x2m+1) < d(x2m+3, x2m+2) then M1(x2m+2, x2m+1) = d(x2m+3, x2m+2).
Therefore from (3.3), we have
0 ≤ ζ(s4d(x2m+3, x2m+2),M1(x2m+2, x2m+1))

= ζ(s4d(x2m+3, x2m+2), d(x2m+3, x2m+2))
< d(x2m+3, x2m+2)− s4d(x2m+3, x2m+2),

a contradiction.
Therefore d(xn, xn+1) ≥ d(xn+1, xn+2) when n is odd. (3.4)
From (3.2) and (3.4), it follows that {d(xn, xn+1)} is a decreasing sequence of
nonnegative reals.
Thus there exists r ≥ 0 such that lim

n→∞
d(xn, xn+1) = r.

Suppose that r > 0.
By using the condition (ζ3) with tn = d(xn+1, xn+2) and sn = d(xn, xn+1), we have
0 ≤ lim sup

n→∞
ζ(s4d(xn+1, xn+2),M1(xn, xn+1)) < 0,

it is a contradiction.
Therefore

lim
n→∞

d(xn, xn+1) = 0. (3.5)

Next, we prove that {xn} is a b-Cauchy sequence.
For this it is sufficient to show that {x2n} is a b-Cauchy sequence.
On the contrary, suppose that {x2n} is not b-Cauchy. We consider the following
two cases.
Case (i): s = 1.
In this case, (X, d) is a metric space. Then by Lemma 1.5 there exist an ε > 0
and sequence of positive integers {2nk} and {2mk} with 2nk > 2mk ≥ k such that
d(x2mk

, x2nk
) ≥ ε and

d(x2mk
, x2nk−2) < ε satisfying (i)-(iv) of Lemma 1.5.

Suppose that there exists a k1 ∈ N with k ≥ k1 such that

1

2
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} > d(x2mk

, x2nk−1). (3.6)

On letting as k →∞ in (3.6) and using (3.5), we get that ε ≤ 0,
a contradiction.
Therefore 1

2
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} ≤ d(x2mk

, x2nk−1) and from
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(2.1), we have
ζ(d(fx2mk

, gx2nk−1),M1(x2mk
, x2nk−1)) ≥ 0, where

M1(x2mk
, x2nk−1) = max{d(x2mk

, x2nk−1), d(x2mk
, fx2mk

), d(x2nk−1, gx2nk−1),
1
2
[d(x2nk−1, fx2mk

) + d(x2mk
, gx2nk−1)]}

= max{d(x2mk
, x2nk−1), d(x2mk

, x2mk+1), d(x2nk−1, x2nk
),

1
2
[d(x2nk−1, x2mk+1) + d(x2mk

, x2nk
)]}.

On taking limits as k →∞ and using (3.5), we get
lim
n→∞

M1(x2mk
, x2nk−1) = max{ε, 0, 0, ε} = ε.

By using (ζ3) with tn = d(x2mk+1, x2nk
) and sn = M1(x2mk

, x2nk−1), we have
0 ≤ lim sup

k→∞
ζ(d(x2mk+1, x2nk

),M1(x2mk
, x2nk−1)) < 0,

it is a contradiction.
Case (ii): s > 1.
In this case, by Lemma 1.6, there exist an ε > 0 and sequence of positive in-
tegers {2nk} and {2mk} with 2nk > 2mk ≥ k such that d(x2mk

, x2nk
) ≥ ε and

d(x2mk
, x2nk−2) < ε satisfying (i)-(iv) of Lemma 1.6.

Suppose that there exists a k1 ∈ N with k ≥ k1 such that

1

2s
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} > d(x2mk

, x2nk−1). (3.7)

On letting limit superior as k →∞ in (3.7) and using (3.5), we get that ε ≤ 0,
a contradiction.
Therefore
1
2s

min{d(x2mk
, fx2mk

), d(x2nk−1, gx2nk−1)} ≤ d(x2mk
, x2nk−1) and from (2.1), we

have
ζ(s4d(fx2mk

, gx2nk−1),M1(x2mk
, x2nk−1)) ≥ 0, (3.8)

where
M1(x2mk

, x2nk−1) = max{d(x2mk
, x2nk−1), d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1),

1
2s

[d(x2nk−1, fx2mk
) + d(x2mk

, gx2nk−1)]}
= max{d(x2mk

, x2nk−1), d(x2mk
, x2mk+1), d(x2nk−1, x2nk

),
1
2s

[d(x2nk−1, x2mk+1) + d(x2mk
, x2nk

)]}.
On taking limit superior as k →∞ and using (3.5), we get
lim
n→∞

M1(x2mk
, x2nk−1) ≤ max{sε, 0, 0, sε

2
} = sε.

From (3.8), we have
0 ≤ lim sup

k→∞
ζ(s4d(fx2mk

, gx2nk−1),M1(x2mk
, x2nk−1))

≤ lim sup
k→∞

[M1(x2mk
, x2nk−1)− s4d(x2mk+1, x2nk

)]

= lim sup
k→∞

M1(x2mk
, x2nk−1)− s4 lim inf

k→∞
d(xmk+1, x2nk

) ≤ sε− s4 ε
s
,
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a contradiction.
Therefore by Case (i) and Case (ii), we have {xn} is a b-Cauchy sequence in X.
Since X is b-complete, there exists x ∈ X such that lim

n→∞
xn = u.

Therefore x = lim
n→∞

x2n+1 = lim
n→∞

fx2n and x = lim
n→∞

x2n+2 = lim
n→∞

gx2n+1 so that

lim
n→∞

fx2n = x = lim
n→∞

gx2n+1.

We assume that f is b-continuous.
Since x2n → x as n→∞, we have fx2n → fx as n→∞.
Now,

0 ≤ d(x, fx) ≤ s[d(x, fx2n) + d(fx2n, fx)]→ 0 as n→∞.

Therefore x is a fixed point of f .
Hence by Proposition 3.1, x is a unique common fixed point of f and g.

Similarly, we can prove that x is a unique common fixed point of f and g
whenever g is b-continuous.

Eventhough, the proof of the following theorem is similar to that of Theorem
3.3, we give its proof and show the importance of the rational term d(y,fx)[1+d(x,fx)]

s2(1+d(x,y))

in the inequality (2.2) (Example 4.2).

Theorem 3.4. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and
(f, g) be a Suzuki Z-contraction type (II ) maps. If either f (or) g is b-continuous
then f and g have a unique common fixed point in X.
Proof. Let x0 ∈ X be arbitrary. Since f(X) ⊆ X and g(X) ⊆ X, as in the proof of
Theorem 3.3, there exists a sequence {xn} in X such that fx2n = x2n+1, gx2n+1 =
x2n+2 for n = 0, 1, 2, . . ..
Without loss of generality, we assume that d(xn, xn+1) > 0 for all n.
Suppose n is even, n = 2m, (say),m ∈ N.
Since 1

2s
min{d(xn, fxn), d(xn+1, gxn+1)} = 1

2s
min{d(x2m, fx2m), d(x2m+1, gx2m+1)}

≤ d(x2m, x2m+1), from (2.2), we have

ζ(s4d(fx2m, gx2m+1),M2(x2m, x2m+1)) ≥ 0, (3.9)

where
M2(x2m, x2m+1) = max{d(x2m, x2m+1),

d(x2m+1,gx2m+1)[1+d(x2m,fx2m)]
1+d(x2m,x2m+1)

,
d(x2m+1,fx2m)[1+d(x2m,fx2m)]

s2(1+d(x2m,x2m+1))
}

= max{d(x2m, x2m+1), d(x2m+1, x2m+2)}.
If d(x2m, x2m+1) < d(x2m+1, x2m+2) then M2(x2m, x2m+1) = d(x2m+1, x2m+2).
Therefore from (3.9), we have
0 ≤ ζ(s4d(x2m+1, x2m+2),M2(x2m, x2m+1))

= ζ(s4d(x2m+1, x2m+2), d(x2m+1, x2m+2))
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< d(x2m+1, x2m+2)− s4d(x2m+1, x2m+2),
a contradiction.
Therefore d(xn, xn+1) ≥ d(xn+1, xn+2) when n is even. (3.10)
Now, if n is odd, n = 2m+ 1, (say), m ∈ N.
Since
1
2s

min{d(xn+1, fxn+1), d(xn, gxn)} = 1
2s

min{d(x2m+2, fx2m+2), d(x2m+1, gx2m+1)}
≤ d(x2m+2, x2m+1) = d(xn+1, xn).

From (2.2), we have

ζ(s4d(fx2m+2, gx2m+1),M2(x2m+2, x2m+1)) ≥ 0, (3.11)

where
M2(x2m+2, x2m+1) = max{d(x2m+2, x2m+1),

d(x2m+1,gx2m+1)[1+d(x2m+2,fx2m+2)]
1+d(x2m+2,x2m+1)

,
d(x2m+1,fx2m+2)[1+d(x2m+2,fx2m+2)]

s2(1+d(x2m+2,x2m+1))
}

= max{d(x2m+2, x2m+1),
d(x2m+1,x2m+2)[1+d(x2m+2,x2m+3)]

1+d(x2m+2,x2m+1)
,

d(x2m+1,x2m+3)[1+d(x2m+2,x2m+2)]
s2(1+d(x2m+2,x2m+3))

}.
If d(x2m+2, x2m+1) < d(x2m+3, x2m+2) then M2(x2m+2, x2m+1) = d(x2m+3, x2m+2).
Therefore from (3.11), we have
0 ≤ ζ(s4d(x2m+3, x2m+2),M2(x2m+2, x2m+1))

= ζ(s4d(x2m+3, x2m+2), d(x2m+3, x2m+2))
< d(x2m+3, x2m+2)− s4d(x2m+3, x2m+2),

a contradiction.
Therefore d(xn, xn+1) ≥ d(xn+1, xn+2) when n is odd. (3.12)
From (3.10) and (3.12), it follows that {d(xn, xn+1)} is a decreasing sequence of
nonnegative reals.
Thus there exists r ≥ 0 such that lim

n→∞
d(xn, xn+1) = r. Suppose that r > 0.

By using the condition (ζ3) with tn = d(xn+1, xn+2) and sn = d(xn, xn+1), we have
0 ≤ lim sup

n→∞
ζ(s4d(xn+1, xn+2),M2(xn, xn+1)) < 0,

it is a contradiction.
Therefore r = 0.

i.e., lim
n→∞

d(xn, xn+1) = 0. (3.13)

We now prove that {xn} is a b-Cauchy sequence.
For this it is sufficient to show that {x2n} is a b-Cauchy sequence.
On the contrary suppose that {x2n} is not b-Cauchy. We now consider the following
two cases.
Case (i): s = 1.
In this case, (X, d) is a metric space. Then by Lemma 1.5 there exist an ε > 0 and
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sequence of positive integers {2nk} and {2mk} with 2nk > 2mk ≥ k such that
d(x2mk

, x2nk
) ≥ ε and d(x2mk

, x2nk−2) < ε satisfying (i)-(iv) of Lemma 1.5.
Suppose that there exists a k1 ∈ N with k ≥ k1 such that

1

2
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} > d(x2mk

, x2nk−1). (3.14)

On taking limits as k →∞ in (3.14) and using (3.13), we get that ε ≤ 0,
a contradiction.
Therefore 1

2
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} ≤ d(x2mk

, x2nk−1) and from
(2.2), we have
ζ(d(fx2mk

, gx2nk−1),M2(x2mk
, x2nk−1)) ≥ 0, where

M2(x2mk
, x2nk−1) = max{d(x2mk

, x2nk−1),
d(x2nk−1,gx2nk−1)[1+d(x2mk

,fx2mk
)]

1+d(x2mk
,x2nk−1)

,
d(x2nk−1,fx2mk

)[1+d(x2mk
,fx2mk

)]

(1+d(x2mk
,x2nk−1))

}

= max{d(x2mk
, x2nk−1),

d(x2nk−1,x2nk
)[1+d(x2mk

,x2mk+1)]

1+d(x2mk
,x2nk−1)

,
d(x2nk−1,x2mk+1)[1+d(x2mk

,x2mk+1)]

(1+d(x2mk
,x2nk−1))

}.
On taking limits as k →∞ and using (3.13), we get that
lim
n→∞

M2(x2mk
, x2nk−1) = max{ε, 0, ε

1+ε
} = ε.

By using (ζ3) with tn = d(x2mk+1, x2nk
) and sn = M2(x2mk

, x2nk−1), we have
0 ≤ lim sup

k→∞
ζ(d(x2mk+1, x2nk

),M2(x2mk
, x2nk−1)) < 0,

a contradiction.
Case (ii): s > 1.
In this case, by Lemma 1.6 there exist an ε > 0 and sequence of positive inte-
gers {2nk} and {2mk} with 2nk > 2mk ≥ k such that d(x2mk

, x2nk
) ≥ ε and

d(x2mk
, x2nk−2) < ε satisfying (i)-(iv) of Lemma 1.6.

Suppose that there exists a k1 ∈ N with k ≥ k1 such that

1

2s
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} > d(x2mk

, x2nk−1). (3.15)

On letting limit superior as k →∞ in (3.15) and using (3.13), we get that ε ≤ 0,
a contradiction.
Therefore 1

2s
min{d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1)} ≤ d(x2mk

, x2nk−1) and from
(2.2), we get

ζ(s4d(fx2mk
, gx2nk−1),M2(x2mk

, x2nk−1)) ≥ 0 (3.16)

where
M2(x2mk

, x2nk−1) = max{d(x2mk
, x2nk−1),

d(x2nk−1,gx2nk−1)[1+d(x2mk
,fx2mk

)]

1+d(x2mk
,x2nk−1)

,



Common Fixed Points of a Pair of Suzuki Z-contraction ... 339

d(x2nk−1,fx2mk
)[1+d(x2mk

,fx2mk
)]

s2(1+d(x2mk
,x2nk−1))

}

= max{d(x2mk
, x2nk−1),

d(x2nk−1,x2nk
)[1+d(x2mk

,x2mk+1)]

1+d(x2mk
,x2nk−1)

,
d(x2nk−1,x2mk+1)[1+d(x2mk

,x2mk+1)]

s2(1+d(x2mk
,x2nk−1))

}.
On taking limit superior as k →∞ and using (3.13), we get
lim sup
n→∞

M2(x2mk
, x2nk−1) ≤ max{s2ε, 0, s2ε

s+ε
} = s2ε.

From the inequality (3.16), we have
0 ≤ lim sup

k→∞
ζ(s4d(fx2mk

, gx2nk−1),M2(x2mk
, x2nk−1))

≤ lim sup
k→∞

[M2(x2mk
, x2nk−1)− s4d(x2mk+1, x2nk

)]

= lim sup
k→∞

M2(x2mk
, x2nk−1)− s4 lim inf

k→∞
d(x2mk+1, x2nk

)

≤ s2ε− s4 ε
s
,

a contradiction.
Therefore by Case (i) and Case (ii), we have {xn} is a b-Cauchy sequence in X.
Since X is b-complete, there exists x ∈ X such that lim

n→∞
xn = x.

Therefore x = lim
n→∞

x2n+1 = lim
n→∞

fx2n and x = lim
n→∞

x2n+2 = lim
n→∞

gx2n+1 so that

lim
n→∞

fx2n = x = lim
n→∞

gx2n+1.

We assume that f is b-continuous. Since x2n → x as n→∞, we have fx2n → fx
as n→∞.
Hence, 0 ≤ d(x, fx) ≤ s[d(x, fx2n) + d(fx2n, fx)]→ 0 as n→∞.
Therefore x is a fixed point of f .
Hence, by Proposition 3.2, it follows that x is a unique common fixed point of f
and g.

Similarly, we can prove that x is a unique common fixed point of f and g
whenever g is b-continuous.

4. Examples and corollaries

The following is an example in support of Theorem 3.3.
Example 4.1. Let X = [0, 1]. We define d : X ×X → R+ by

d(x, y) =


0 if x = y,
11
15

if x, y ∈ [0, 2
3
],

23
25

+ x+y
26

if x, y ∈ (2
3
, 1],

121
250

otherwise.

Then clearly (X, d) is a complete b-metric space with coefficient s = 51
49

.
Here we observe that when x = 9

10
, z = 1 ∈ (2

3
, 1] and y ∈ (0, 2

3
], we have

d(x, z) = 23
25

+ x+z
26

= 1291
1300

� 121
125

= 121
250

+ 121
250

= d(x, y) + d(y, z) so that d is not a
metric.
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We define f, g : X → X by

f(x) =

{
x if x ∈ [0, 2

3
)

4
3
− x if x ∈ [2

3
, 1]

and g(x) =

{
x+3
4

if x ∈ [0, 2
3
)

1− x
2

if x ∈ [2
3
, 1].

Clearly f is b-continuous.
We define ζ : R+ × R+ → (−∞,∞) by ζ(s, t) = 99

100
t− s, t ≥ 0, s ≥ 0.

Then ζ is a simulation function. Without loss of generality, we assume that x ≥ y.
Case (i): x, y ∈ [0, 2

3
).

1
2s

min{d(x, fx), d(y, gy)} = ( 49
102

)(121
250

) ≤ 11
15

= d(x, y).
d(fx, gy) = 121

250
, d(x, y) = 11

15
, d(x, fx) = 11

15
, d(y, gy) = 121

250
, d(y, fx) = 11

15
, d(x, gy) =

121
250

.

M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}
= max{11

15
, 11
15
, 121
250
,
49[ 121

250
+ 11

15
]

102
} = 11

15
.

We now consider
ζ(s4d(fx, gy),M1(x, y)) = 99

100
M1(x, y)− s4d(fx, gy) = 99

100
(11
15

)− (51
49

)4(121
250

) ≥ 0.
Case (ii): x, y ∈ (2

3
, 1].

1
2s

min{d(x, fx), d(y, gy)} = ( 49
102

)(121
250

) ≤ 23
25

+ x+y
26

= d(x, y).
d(fx, gy) = 11

15
, d(x, y) = 23

25
+ x+y

26
, d(x, fx) = 121

250
, d(y, gy) = 121

250
, d(y, fx) = 121

250
,

d(x, gy) = 121
250

.

M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}
= max{23

25
+ x+y

26
, d(x, fx) = 121

250
, d(y, gy) = 121

250
,
49[ 121

250
+ 121

250
]

102
} = 23

25
+ x+y

26
.

We now consider
ζ(s4d(fx, gy),M1(x, y)) = 99

100
M1(x, y)−s4d(fx, gy) = 99

100
(23
25

+ x+y
26

)−(51
49

)4(11
15

) ≥ 0.
Case (iii): x ∈ (2

3
, 1], y ∈ [0, 2

3
].

1
2s

min{d(x, fx), d(y, gy)} = ( 49
102

)(121
250

) ≤ 27
10

= d(x, y).
d(fx, gy) = 121

250
, d(x, y) = 121

250
, d(x, fx) = 121

250
, d(y, gy) = 121

250
, d(y, fx) = 11

15
,

d(x, gy) = 23
25

+ x+y
26

.

M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}
= max{121

250
, 121
250
, 121
250
,
49[ 23

25
+x+y

26
+ 11

15
]

102
} =

49[ 23
25

+x+y
26

+ 11
15

]

102
.

Now we consider
ζ(s4d(fx, gy),M1(x, y)) = 99

100
M1(x, y)− s4d(fx, gy) = 99

100
(
49[ 23

25
+x+y

26
+ 11

15
]

102
)

−(51
49

)4(121
250

) ≥ 0.
Case (iv): x = 2

3
, y ∈ [0, 2

3
).

1
2s

min{d(x, fx), d(y, gy)} = 0 ≤ 121
250

= d(x, y).
d(fx, gy) = 121

250
, d(x, y) = 121

250
, d(x, fx) = 0, d(y, gy) = 121

250
, d(y, fx) = 121

250
, d(x, gy) =

23
25

+ x+y
26

.

M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}
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= max{121
250
, 0, 121

250
,
49[ 23

25
+x+y

26
+ 121

250
]

102
} =

49[ 23
25

+x+y
26

+ 121
250

]

102
.

We now consider
ζ(s4d(fx, gy),M1(x, y)) = 99

100
M1(x, y)− s4d(fx, gy) = 99

100
(
49[ 23

25
+x+y

26
+ 121

250
]

102
)−

(51
49

)4(121
250

) ≥ 0.
From all the above cases we conclude that (f, g) is a pair of Suzuki Z-contraction

type (I) maps.
Therefore f and g satisfy all the hypotheses of Theorem 3.3 and 2

3
is the unique

common fixed point of f and g.
The following is an example in support of Theorem 3.4.

Example 4.2. Let X = R+ and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
4 if x, y ∈ [0, 1],

5 + 1
x+y

if x, y ∈ (1,∞),
27
10

otherwise.

Then clearly (X, d) is a complete b-metric space with coefficient s = 489
480

.
We define f, g : X → X by

f(x) =

{
x2 if x ∈ [0, 1)
1
x2

if x ∈ [1,∞)
and g(x) =

{
2x2 + 2 if x ∈ [0, 1)
x2+1
2

if x ∈ [1,∞).
Clearly f is b-continuous.
We define ζ : R+ × R+ → (−∞,∞) by ζ(s, t) = 99

100
t− s, t ≥ 0, s ≥ 0.

Then ζ is a simulation function. Without loss of generality, we assume that x ≥ y.
Case (i): x, y ∈ [0, 1).
1
2s

min{d(x, fx), d(y, gy)} = (480
978

)(27
10

) ≤ 4 = d(x, y).
d(fx, gy) = 27

10
, d(x, fx) = 4, d(y, gy) = 27

10
, d(x, gy) = 27

10
, d(y, fx) = 4.

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}
= max{4, 27

10
, 4
( 489
480

)2
} = 4.

Now we consider
ζ(s4d(fx, gy),M2(x, y)) = 99

100
M2(x, y)− s4d(fx, gy) = 99

100
(4)− (489

480
)4(27

10
) ≥ 0.

Case (ii): x, y ∈ (1,∞).
1
2s

min{d(x, fx), d(y, gy)} = (480
978

)(27
10

) ≤ 5 + 1
x+y

= d(x, y).

d(fx, gy) = 27
10
, d(x, y) = 5 + 1

x+y
, d(x, fx) = 27

10
, d(y, gy) = 5 + 1

x+y
, d(y, fx) = 27

10
,

d(x, gy) = 5 + 1
x+y

.

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}

= max{5 + 1
x+y

,
(5+ 1

x+y
)[1+ 27

10
]

6+ 1
x+y

,
27
10

[1+ 27
10

]

( 489
480

)2(6+ 1
x+y

)
} = 5 + 1

x+y
.

We now consider
ζ(s4d(fx, gy),M2(x, y)) = 99

100
M2(x, y)−s4d(fx, gy) = 99

100
(5+ 1

x+y
)−(489

480
)4(27

10
) ≥ 0.
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Case (iii): x ∈ (1,∞), y ∈ [0, 1).
1
2s

min{d(x, fx), d(y, gy)} = (480
978

)(27
10

) ≤ 27
10

= d(x, y).
d(fx, gy) = 27

10
, d(x, y) = 27

10
, d(x, fx) = 27

10
, d(y, gy) = 27

10
, d(y, fx) = 4, d(x, gy) =

5 + 1
x+y

.

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}

= max{27
10
,

27
10

[1+ 27
10

]

1+ 27
10

,
4[1+ 27

10
]

( 489
480

)2(1+ 27
10

)
} = 4

( 489
480

)2
.

We now consider
ζ(s4d(fx, gy),M2(x, y)) = 99

100
M2(x, y)− s4d(fx, gy) = 99

100
( 4
( 489
480

)2
)− (489

480
)4(27

10
) ≥ 0.

Case (iv): x = 1, y ∈ [0, 1).
1
2s

min{d(x, fx), d(y, gy)} = 0 ≤ 4 = d(x, y).
d(fx, gy) = 27

10
, d(x, y) = 4, d(x, fx) = 0, d(y, gy) = 27

10
, d(y, fx) = 4, d(x, gy) = 27

10
.

M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

}
= max{4, 27

50
, 4
( 489
480

)2(5)
} = 4.

Now we consider
ζ(s4d(fx, gy),M2(x, y)) = 99

100
M2(x, y)− s4d(fx, gy) = 99

100
(4)− (489

480
)4(27

10
) ≥ 0.

From all the above cases (f, g) is a pair of Suzuki Z-contraction type (II) maps.
Therefore f and g satisfy all the hypotheses of Theorem 3.4 and 1 is the unique
common fixed point of f and g.

Here we observe from Case (iii) that, if we omit the term d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

from

the inequality (2.2), then the inequality (2.2) fails to hold.

For, we choose x = 2, y = 1
2
. In this case

1
2s

min{d(x, fx), d(y, gy)} = (480
978

) min{d(2, 1
4
), d(1

2
, 5
2
)} = (480

978
) min{27

10
, 27
10
}

= (480
978

)(27
10

) ≤ 27
10

= d(x, y).
Here
M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]

1+d(x,y)
} = max{d(2, 1

2
),
d( 1

2
, 5
2
)[1+d(2, 1

4
)]

1+d(2, 1
2
)
}

= max{27
10
,

27
10

[1+ 27
10

]

1+ 27
10

} = 27
10

and

d(fx, fy) = d(1
4
, 4) = 27

10
.

Now
ζ(s4d(fx, gy),M2(x, y)) = kM2(x, y)− s4d(fx, gy) = k(27

10
)− (489

480
)4(27

10
) � 0 for any

k ∈ [0, 1).

Hence the term d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

plays an important role in the inequality (2.2).

Corollary 4.3. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let f, g :
X → X be two selfmaps on X. Assume that there exist two continuous functions
ψ, ϕ : R+ → R+with ϕ(t) < t ≤ ψ(t) for all t > 0 and ϕ(t) = ψ(t) = 0 if and only
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if t = 0 such that

1

2s
min{d(x, fx), d(y, gy)} ≤ d(x, y) implies that ψ(s4d(fx, gy)) ≤ ϕ(M1(x, y))

(4.1)

for all x, y ∈ X, where M1(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2s

}.
If either f (or) g is b-continuous then f and g have a unique common fixed point
in X.
Proof. We choose ζ(t, s) = ϕ(s) − ψ(t) for all t, s ∈ R+. Then ζ is a simulation
function. Also, the inequality (4.1) implies the inequality (2.1) holds with this
simulation function ζ. Hence by Theorem 3.3, the conclusion of this corollary
follows.

Similar to Corollary 4.3, we have the following corollary to Theorem 3.4.

Corollary 4.4. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let f, g :
X → X be two selfmaps on X. Assume that there exist two continuous functions
ψ, ϕ : R+ → R+with ϕ(t) < t ≤ ψ(t) for all t > 0 and ϕ(t) = ψ(t) = 0 if and only
if t = 0 such that

1

2s
min{d(x, fx), d(y, gy)} ≤ d(x, y) implies that ψ(s4d(fx, gy)) ≤ ϕ(M2(x, y))

for all x, y ∈ X, where M2(x, y) = max{d(x, y), d(y,gy)[1+d(x,fx)]
1+d(x,y)

, d(y,fx)[1+d(x,gy)]
s2(1+d(x,y))

}.
Then f and g have a unique common fixed point in X, provided f (or) g is b-
continuous.

By choosing g = f in Theorem 3.3 and Theorem 3.4, we have the following
corollaries.

Corollary 4.5. [4] Let (X, d) be a complete b-metric space with coefficient s ≥ 1
and f : X → X be a Suzuki Z-contraction type (I ) map. Then f has a unique
fixed point in X.

Corollary 4.6. [4] Let (X, d) be a complete b-metric space with coefficient s ≥ 1
and f : X → X be a Suzuki Z-contraction type (II ) map. Then f has a unique
fixed point in X.

5. Conclusion
In this paper, we introduced Suzuki Z-contraction type (I) maps, Suzuki Z-

contraction type (II) maps, for a pair of selfmaps in b-metric spaces and proved the
existence and uniqueness of common fixed points. Our results extend/generalize
the known results that are available in the literature. We provided examples in
support of our results and some corollaries to our results are presented.



344 South East Asian J. of Mathematics and Mathematical Sciences

References

[1] Aghajani A., Abbas M. and Roshan J. R., Common fixed point of general-
ized weak contractive mappings in partially ordered b-metric spaces, Math.
Slovaca, 64(4) (2014), 941-960.

[2] Aydi H., Bota M-F., Karapınar E. and Mitrović S., A fixed point theorem for
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