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1. Introduction

Nonlinear analysis plays an important role in many branches of Applied Sci-
ences, for latest works, we refer [13, 20, 24, 25, 26]. Particularly, fixed point theory
is a part of nonlinear analysis and its development depends on the generalization
of contraction conditions or/and generalization of ambient spaces of the operator
under consideration. In 1975, Dass and Gupta [12] established fixed point results
using contraction condition involving rational expressions and proved the existence
of fixed points in complete metric spaces. In 2008, Suzuki [28] proved two fixed
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point theorems, one of which is a new type of generalization of the Banach con-
traction principle and does characterize the metric completeness.

The main idea of b-metric was initiated from the works of Bourbaki [9] and
Bakhtin [6]. The concept of b-metric space or metric type space was introduced
by Czerwik [10] as a generalization of metric space. Afterwards, many authors
studied fixed point theorems for single-valued and multi-valued mappings in b-
metric spaces, for more information we refer [2, 7, 8, 11, 15, 18, 19, 27].

In this paper, we denote RT = [0, 00) and N is the set of all natural numbers.

Definition 1.1. [10] Let X be a non-empty set. A function d : X x X — RT is
said to be a b-metric if the following conditions are satisfied: for any x,y,z € X;

(1) 0 <d(z,y) and d(z,y) =0 if and only if z =y,

(i) d(z,y) = d(y, z),
(77i) there exists s > 1 such that d(z,2) < sld(z,y) + d(y, z)].

In this case, the pair (X,d) is called a b-metric space with coefficient s.
Every metric space is a b-metric space with s = 1. In general, every b-metric
space is not a metric space(Example 4.3, [4]).

Definition 1.2. [8] Let (X, d) be a b-metric space.

(1) A sequence {x,} in X is called b-convergent if there exists v € X such that

d(xp,x) = 0 as n — oo. In this case, we write lim z, = x and x is unique.
n—oo

(17) A sequence {x,} in X is called b-Cauchy if d(xp, ) — 0 as n,m — oo.

(17i) A b-metric space (X,d) is said to be a complete b-metric space if every b-
Cauchy sequence in X is b-convergent in X.

In general, a b-metric is not necessarily continuous.

Example 1.3. [14] Let X = NU {co}. We define a mapping d : X x X — [0, 00)
as follows:

0 if m=n,
L _ 1V if one of m, n is even and the other is even or oo,
d(m,n) = mo_onl : :
5) if one of m,n is odd and the other is odd or oo,
2 otherwise.

5
5

Definition 1.4. [8] Let (X,dx) and (Y,dy) be two b-metric spaces. A function

Then (X, d) is a b-metric space with coefficient s =
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f: X =Y is a b-continuous at a point v € X, if it is b-sequentially continuous at
x. i.e., whenever {x,} is b-convergent to x, fx, is b-convergent to fux.
The following lemmas are useful in proving our main results.

Lemma 1.5. [5] Suppose (X, d) is a metric space. Let {x,} be a sequence in X
such that d(x,, x,11) = 0 asn — oco. If {x,} is a not Cauchy sequence then there
exist an € > 0 and sequences of positive integers {my} and {ny} with n > my >k
such that d(x,,, xn,) > €. For each k > 0, corresponding to my, we can choose ny,
to be the smallest positive integer such that (T, , Tn,) > €, d(Tm,, Tny—1) < € and

(i) kh_{go d(Tmy, Tny) = € (ii) kh—glo d(@n, -1, Tmy,) = €
(iii) kh_)rgo d(Tpmy41,Tn,) =€ and (iv) kh—{go (T 41, Tpy—1) = €.

Lemma 1.6. [23] Suppose (X,d) is a b-metric space with coefficient s > 1 and
{z,} be a sequence in X such that d(z,xn41) — 0 as n — oco. If {x,} is a not
Cauchy sequence then there exist an € > 0 and sequences of positive integers {my}
and {ny} with ny > my > k such that d(z,,,x,,) > €. For each k > 0, cor-
responding to my, we can choose ny to be the smallest positive integer such that
ATy, Ty ) > €, d(Tinyy Tny—1) < € and

(i) e <liminfd(zp,,, x,,) < limsupd(Ty,, , T, ) < se
k—o0 k—o0

(ii) € < liminf d(@m, 41, Tn,) < Hmsup d(Tp, 41, 2y, ) < s%€
k—oo k—s00
(iil) € < liminf d(Zp, , Tn,41) < HUmsup d(zm, , o, 11) < s%€
k—oo k—o0
(iv) & < liminf d(zm41, Tnypg1) < Bmsup d(Tm, 41, Tnys1) < s3e.

k—o0 k—o0

Lemma 1.7. [1] Let (X,d) be a b-metric space with coefficient s > 1. Suppose
that {x,} and {y,} are b-convergent to x and y respectively, then we have

1 . .
?d(x, y) < liminf d(z,, y,) < limsup d(z,, y,) < s*d(x,y).

n—00 n—00

In particular, if v =y, then we have lim d(x,,y,) = 0. Moreover for each z € X
n—oo

we have |
gd(x, z) < liminfd(z,, z) < limsupd(z,, z) < sd(z, 2)

n—oo n—o00

In 2015, Khojasteh, Shukla and Radenovié [8] introduced simulation function
and defined Z-contraction with respect to a simulation function.

Definition 1.8. [16] A simulation function is a mapping ¢ : RT x RT — (—o00, 00)
satisfying the following conditions:
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(¢1) €(0,0) =0;
(Ca) C(t,s) < s—tfor all s,t>0;

(¢3) if {tn},{sn} are sequencesin (0,00) such that lim ¢, = lims, =1 €

n— o0 n—o0
(0, 00) then

lim sup ¢ (t,,, s,) < 0.

n—oo

Remark 1.9. [3]| Let ¢ be a simulation function. If {t,},{sn} are sequences in
(0,00) such that lim t, = hm sp =1€ (0,00), then limsup ((kt,,s,) <0 for any
—

n—oo n—oo
E>1.
The following are examples of simulation functions.

Example 1.10. [3] Let ( : RT x Rt — (—00, 00) be defined by

(i) C(t,s) = As—t for all t,s € RT, where A € [0,1);
(i) ¢(t,s) === —tfor all s,t € RT;
(iii) ¢(t,s) =s — kt for all t,s € R", where k > 1;
(iv) ¢(t,s) = 75 — (1 +1) for all 5,t € RY;

(v) ((t,s) = —t for all s,t € Rt where k > 1.

Definition 1.11 [16] Let (X,d) be a metric space and f: X — X be a selfmap of
X. We say that f is a Z-contraction with respect to (, if there exists a simulation
function ¢ such that

C(d(fz, fy), d(z,y)) >0
forall x,y € X.
Theorem 1.12. [16] Let (X, d) be a complete metric space and f : X — X be a Z-

contraction with respect to a certain simulation function ¢, then for every xy € X,
the Picard sequence {f"xo} converges in X and lim f"zq = u(say) in X and u is
n—oo

the unique fized point of f in X.
Recently, Olgun, Bicer and Alyildiz [21] proved the following result in complete
metric spaces.

Theorem 1.13. [21] Let (X, d) be a complete metric space and f : X — X be a
selfmap on X. If there exists a simulation function ¢ such that

C(d(fz, fy), M(z,y)) >0
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for all x,y € X, where M(z,y) = max{d(x,y),d(z, fz),d(y, fy), wh

then for every xo € X, the Picard sequence { f"xo} converges in X and lim f"zq =
n—oQ

u (say) in X and u is the unique fized point of f in X.
In 2018, Babu, Dula and Kumar [3] extended Theorem 1.13 of [21] to a pair of
selpmaps in the setting of b-metric spaces as follows.

Theorem 1.14. [3] Let (X,d) be a complete b-metric space with coefficient s > 1
and f,g: X — X be a selfmaps on X. If there exists a simulation function ¢ such

that

C(s'd(fx,gy), M(x,y)) > 0
for all x,y € X, where M(z,y) = max{d(z,y),d(z, fz),d(y, gy), “22HEY,
then f and g have a unique common fixed point in X, provided either f or g is
b-continuous.

The following theorem is due to Kumam, Gopal and Budhia [17].

Theorem 1.15. [17] Let (X, d) be a complete metric space and f : X — X be a
selfmap on X. If there exists a simulation function ¢ such that

%d(:p,fx) <d(z,y) = ((d(fz, fy),d(z,y)) =0

for all z,y € X, then for every xo € X, the Picard sequence {x,}, where x, =
frn_1 for all n € N converges to the unique fized point of f.

In 2018, Padcharoen, Kumam, Saipara and Chaipunya [22], proved the following
theorem in complete metric spaces.

Theorem 1.16. [22] Let (X, d) be a complete metric space and f : X — X be a
selfmap on X. If there exists a simulation function ¢ such that

%d(xvf v) < d(z,y) = ((d(fz, fy), M(z,y)) >0

for all z,y € X, where M(z,y) = max{d(z,y),d(z, fx),d(y, fy), W},
then for every xo € X, the Picard sequence {x,}, where x,, = fx,_1 for alln € N
converges to the unique fized point of f.

Recently, the authors of the present paper, extended the results, namely The-
orem 1.15 and Theorem 1.16 to b-metric spaces [4]. Motivated by these works, we
extend Theorem 1.15 and Theorem 1.16 to a pair of maps in b-metric spaces.

In Section 2, we introduce Suzuki Z-contraction type (I) maps, Suzuki Z-
contraction type (II) maps in b-metric spaces for a pair of selfmaps and provide
examples. In Section 3, we prove the existence and uniqueness of common fixed
points of Suzuki Z-contraction type (I) and type (IT) maps. In Section 4, we draw
some corollaries to our results and provide examples in support of our results.
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2. Suzuki Z-contraction type maps
In this section, we introduce Suzuki Z-contraction type (I) maps and Suzuki
Z-contraction type (II) maps for a pair of selfmaps in b-metric spaces.

Definition 2.1. Let (X,d) be a b-metric space with coefficient s > 1 and f,g
X — X be selfmaps on X. We say that (f,g) is a Suzuki Z-contraction type (I)
maps, if there exists a simulation function ¢ such that

1
% min{d(z, fz),d(y,gy)} < d(x,y) implies that ((s*d(fx, gy), My(x,y)) > 0
(2.1)
for all z,y € X, where My(z,y) = max{d(z,v),d(z, fz),d(y, gy), Lol tdw.fo)y

2s
Example 2.2. Let X = (0,1) and let d : X x X — R" defined by
- 0 if v=y
d(z,9) = { (x+y)?* if x#y.
Then clearly (X, d) is a b-metric space with coefficient s = 2.

We define f,g: X — X by f(z) = 2642) and g(x) =

256 16(f+x)'
We define ¢ : RT x Rt — (—00,00) by ((t,s) = 15 — ¢.
Without loss of generality, we assume that x <.

We have 2% min{d(z, fz),d(y, gy)} = 1 mln{(x—i- (2561’))27 @_me} < (a4y)? =
d(z,y) d d
M (z,y) = max{d(z,y),d(z, fz),d(y, gy), W}

z(5+x (z+15057)° +(y+i(5+m))
zmax{(x+y) (fL‘—|— (25'2. )) (y+ 16(?4-3/))2 16(1+y) - 256 }

Now we consider

std(fz,gy) = 16<x(§;6x) 1 16(f+y))2 _ 16<x(5+x) .
w6+ @)’ < 1@+ ) = gd(o,y) < PMi(z,y).

Therefore the pair (f,g) is a Suzuki Z-contraction type (I) maps.
Definition 2.3. Let (X,d) be a b-metric space with coefficient s > 1 and f, g :

X — X be selfmaps on X. We say that (f,g) is a Suzuki Z-contraction type (1)
maps, if there exists a simulation function ( such that

)2 < i(y(5+y)+ y )QS

(1+y)

1
5, min{d(z, fz), d(y, gy)} < d(x,y) implies that ((s"d(fx,gy), Ma(x,y)) > 0
s
(2.2)
d(y.gy)[1+d(@.fx)] d(y,fw)[1+d(r,f:v)]}
1+d(z,y) T S (1+d(zyy))

Example 2.4. Let X = R" and let d be defined as in Example 2.2.
We define f,g: X — X by

for all x,y € X, where My(x,y) = max{d(z,y),
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2 . z(1+z) .
_ ) a5 i 2 €]0,1) _ =5 if x€(0,1
/(@) { = if ze[l,00) and - g(x) 5 i zefloo).
We define ¢ : RT x Rt — (—00,00) by ((t,s) = 15 —¢.

Without loss of generality, we assume that y < z.

Case (i): z,y € [0,1).

We have 3 min{d(z, fz), d(y, gy)} = §min{(z + 35)%, (y + L552)%} < (2 +y)* =
d(z,y).

Msy(z,y) = max{d(z, ), d(y.gy)[1+d(z,fz)] (y fﬂc [L+d(z,fz ]}

14+d(z,y) ’ 2(14-d(= y) ,
(1Y) V2114 (4 2 Lt (g 222
= max{(x 4 y>2’ (y+ 5121+)(:8[+Z§2+256) }’ (erQZ?l)_’_[(:_iy;?%) ]}

Now we consider
s4d — 16 y(1+y) 2 _ 1z | y(+y)y2 1 (2? 2
(fz, gy) (256 512 )= 1_6(E + 75 )* < E(E + )

< )? =
Case (ii): x,y € [1,00).
We have o= min{d(z, fz),d(y, gy)} = + min{(z+15)?, (y+35)*} < (z+y)* = d(z,y).
Msy(z,y) = max{d(z, ), d(y,9y)[1+d(z,fz)] d(y ffv [1+d(z, f:v ]}

h;d(zx[’y) 1’ | 2(1+d( a;[u) 2
(y+35)2[1+(z+15)2 ( +16)*[1+(2+ 15)
= max{(z + y)?, z 321+(x+y)2 6, 31?1+(m+y)2)16 }
Now we consider
s'd(fe, gy) = 16(5 + 55)° = () < §(@ +9)? = jd(z,y) < [Ma(z,y).
Case (iii): z € [1 OO) y€[0,1).
. 3 1
We have 2—18m1n{d(13, fz),d(y, gy)} = %mln{(w + %)2, (y + y(51+2?/)) }<(r+y)? =
d(m7y) d 14d 1 d
Mo(z,y) = max{d(,y), GRS, Aol ety
+y(1+y) 214 (24 + 14+ (z+
= max{(x + y)Q, Y 51i+zx[+y)(2 16) ]’ w zll(EiJr[(:Jchy 16) ]}

Now we consider
S1d( £, gy) = 16(+YELY2 = L(14 202 < Lp4y)? = Ld(z,y) < LM(, ).
Therefore from all the above cases we conclude that the pair (f,g) is a Suzuki
Z-contraction type (II) maps.

Remark 2.5. [t is clear from the definition of simulation function that ((t,s) <0
for allt > s > 0. Therefore

(i) if the pair (f,g) satisfies (2.1), then

1
% min{d(z, fr),d(y, gy)} < d(z,y) implies that s*d(fx,gy) < Mi(z,y),
s

forall z,y € X; and
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(i1) if the pair (f,g) satisfies (2.2), then

1
2_ HllIl{d(;E, fLU), d<y7 gy)} < d(ﬂ?, y) implies that 54d(fx7 gy) < M2(‘r7 y)’
S

forallz,y € X.

3. Main Results

Proposition 3.1. Let (X,d) be a b-metric space with coefficient s > 1 and f,g :
X — X be two selfmaps. Assume that the pair (f,g) is a Suzuki Z-contraction
type (I) maps. Then w is a fixed point of f if and only if u is a fized point of g.
Moreover, in this case u is unique.

Proof. Let u be a fixed point of f. ie., fu = u.

Suppose that gu # u.

We have

o min{d(u, fu),d(u, gu)} = 5= min{d(u, u), d(u, gu)} = 0 = d(u, u)

and hence from the inequality (2.1), we get

C(s*d(fu,gu), My(u,u)) > 0, where

M (u, u) = max{d(u, u), d(u, fu),d(u, gu), W} = d(u, gu).

By using ({s), we have

0 < ¢(s*d(u, gu), My (u,u)) < My(u,u) — sd(u, gu) = d(u, gu) — s*d(u, gu),

a contradiction.

Hence gu = u, so that u is a common fixed point of f and g.

Similarly, it is easy to see that if u is a fixed point of g then u is a fixed point of f
also.

Suppose u and v are two common fixed points of f and g with u # v.

Since o- min{d(u, fu),d(v, gv)} < d(u,v) so that from the inequality (2.1), we get
¢(s*d(fu, gv), My(u,v)) > 0, where

M (u,v) = max{d(u,v), d(u, fu),d(v, gv), W} = d(u,v).

By using ({s), we have

0 < ¢(s*d(u,v), Mi(u,v)) < My(u,v) — s*d(u,v) = d(u,v) — sd(u,v),

a contradiction.

Therefore u = v. Hence f and g have a unique common fixed point in X.

Proposition 3.2. Let (X,d) be a b-metric space with coefficient s > 1 and f, g :
X — X be two selfmaps. Assume that the pair (f,q) is a Suzuki Z-contraction
type (II) maps. Then w is a fixed point of f if and only if u is a fized point of g.
Moreover, in this case u s unique.

Proof. Follows as on the similar lines of Proposition 3.1 and hence we omit the
proof.
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Theorem 3.3. Let (X,d) be a complete b-metric space with coefficient s > 1 and
(f,9) be a Suzuki Z-contraction type (1) maps. If either f (or) g is b-continuous
then f and g have a unique common fized point in X.

Proof. Let xy € X be arbitrary. Since f(X) C X and ¢g(X) C X, there exist
x1,T9 € X such that frg = x; and gr; = x9. Similarly there exist x3, x4 € X such
that fxy = x5 and gr3 = 24.

In general, we construct a sequence {x,} in X by fra, = Zoni1,9Tonr1 = Tonya for
n=20,1,2,....

Suppose T3, = To,+1 for some n, then xy, = fxs, so that zy, is a fixed point of f.
Hence by Proposition 3.1, we have x5, is a fixed point of g also so that xs, is a
common fixed point of f and g.

Similarly, if x9,11 = Z9,12 for some n. Then x5,.; is a common fixed point of f
and g.

Hence without loss of generality, we assume that z, # z,,, for all n.

Suppose n is even. Then n = 2m, m € N. Since

= min{d(z,, f2n), d(@pi1, 9Tns1)} = 5 min{d(@om, fTom), d(@2mi1, 9T2ms1)} <
d(xom, Tams1), it follows from (2.1) that

C(s*d(fr2m, gT2mi1), M1(Tom, Tomi1)) = 0 (3.1)
where

M1 (‘Q:va x2m+l) = maX{d(mea x2m+1) d(l'?ma f$2m) d(x2m+17 gx2m+1)>
5= [d(Tom, 9Tami1) + d(Tami1, from)]}
= max{d(zam, Tom+1), d(Tam, Tam+1), A(T2m+1, Tam+2),
= max{d(xgm, I2m+1), d($2m+1, I2m+2)}.
If d([L’Qm, .Z'Qm_H) < d(l’gm_H, $2m+2) then Ml(ZL'Qnu $2m+1> = d($2m+1, $2m+2).
Therefore, from (3.1), we have
0 < ((s*d(am+1, Toam2)s Mi(Tom, Tom+1))
= ((sd(Tom+1; Tomy2), A(Tomi1, Tami2))
< d(Tom+1, Tam+2) — 34d($2m+1, Tom+2),
a contradiction.

Izm ,$2m +2) }

Therefore d(z,, Tp11) > d(Tpi1, Tnio) When n is even. (3.2)
Now, if n is odd, n = 2m + 1, (say), m € N.
Since

% min{d($n+1) fInJrl); d(xn; g*xn)} = % min{d<x2m+27 fx2m+2>7 d(meJrl; 9372m+1)}

< d(T2ma2, Tame1), from (2.1), we have

C<34d<f952m+2,9$2m+1), M1(9€2m+2, 1’2m+1)) >0, (3-3)

where
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My (Zomt2, Tamt1) = max{d(Tom+2, Tam+1), A Zamt2, fTom+2), A(Tom+1, 9Tomt1),
3= [d(Tomr2; gTom1) + d(Tomat, [Lomi2)]}
= maX{d($2m+2, 952m+1), d($2m+2, $2m+3), d($2m+1, 932m+2),
d(T2m+1,2m+3)
= max{d(Tam+t2; Tam+1), A(Tom+2, Tom3) }-
If d($2m+2,$2m+1) < d(I2m+37$2m+2) then M, ($2m+2, $2m+1) = d($2m+3,$2m+2)'
Therefore from (3.3), we have
0 < C(s*d(xam+3, Tom+2)s M1 (Tam2, Tami1))
= ((s*d(Tom+3; Tom+2), A(Tom+3, Tami2))
< d(Zam3, Tamt2) — S4d($2m+3, Tom+2),
a contradiction.
Therefore d(x,,, 1) > d(@p41, Tnyo) when n is odd. (3.4)
From (3.2) and (3.4), it follows that {d(z,,z,+1)} is a decreasing sequence of
nonnegative reals.

Thus there exists r > 0 such that lim d(z,,z,.1) = 7.
n—oo

Suppose that » > 0.
By using the condition ((3) with t,, = d(zp41, Tni2) and s, = d(x,, T41), Wwe have
0 < limsup ((s*d(Tni1, Tnro), Mi(Tn, Tpy1)) <0,

n—oo
it is a contradiction.
Therefore
lim d(x,, py1) = 0. (3.5)
n—oo

Next, we prove that {z,} is a b-Cauchy sequence.

For this it is sufficient to show that {z,} is a b-Cauchy sequence.

On the contrary, suppose that {zs,} is not b-Cauchy. We consider the following
two cases.

Case (i): s=1.

In this case, (X,d) is a metric space. Then by Lemma 1.5 there exist an € > 0
and sequence of positive integers {2n;} and {2my} with 2n; > 2m;, > k such that
d(zam, , Ton, ) > € and

d(Tam, , Ton,—2) < € satisfying (i)-(iv) of Lemma 1.5.

Suppose that there exists a k; € N with k£ > k; such that

1 .
5 min{d(Tam, , fTom, ), A(Ton,—1, 9Ton,—1)} > d(Tamy Tong—1)- (3.6)

On letting as k — oo in (3.6) and using (3.5), we get that € <0,
a contradiction.
Therefore %min{d(xgmk,fxgmk),d(xgnk_l,gx%k_l)} < d(zam, , Ton,—1) and from
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(2.1), we have
C(d<fx2mkagx2nk—1); M1($2mk, $2nk—1)) > 0, where
M, ($2mk7 iUan—l) = max{d(mgmk,, xznk—1)7 d(ﬂfzmk, fomk)a d($2nk—1, 9552%—1),
%[d<x2nkfla fomk> + d(x2mk: ngnkfl)]}
= HlaX{d(Z'ka, x2nk71)7 d($2mk ) $2mk+1), d(ﬂhnk*l, 132nk),
5ld(Ton,—1, Tomyt1) + d(T2m,,, Ton, )] }-
On taking limits as k& — oo and using (3.5), we get

lim M (2o, , Ton,—1) = max{e, 0,0, e} = €.
n—r0o0

By using (¢3) with ¢, = d(xam, +1, Ton, ) and s, = Mi(Zom, , Ton,—1), We have
0 < limsup ((d(T2m,+1, Tan, )s M1(T2m, s Tan,—1)) < 0,

k—o0
it is a contradiction.

Case (ii): s > 1.

In this case, by Lemma 1.6, there exist an ¢ > 0 and sequence of positive in-
tegers {2ny} and {2my} with 2n, > 2my > k such that d(xa,, ,2,,) > € and
d(Zam, , Ton,—2) < € satistying (i)-(iv) of Lemma 1.6.

Suppose that there exists a k; € N with k£ > k; such that

1

2_8 min{d(xgmk, fomk)a d(x2nk—1a gx?nk—l)} > d(lL‘ka7 xan—l)‘ (37)

On letting limit superior as k — oo in (3.7) and using (3.5), we get that € <0,
a contradiction.

Therefore

1

5; min{d(zom, , [Tom, ), d(Ton,—1, 9Ton,—1)} < d(Tam,, Ton,—1) and from (2.1), we

have
C(s* d(famys 9Ton, 1), Mi(Tomy,, Tane—1)) > 0, (3.8)

where
Ml (IQmw x2nk_1) = max{d(xgmk, :L‘an—l)v d(x2mk7 fl‘ka)v d<x2nk_17 ngnk_1)7

%g[d(xan_h fx?mk) + d(x2mkvgx2nk—l)]}

= max{d(Tam,, Tan,—1), AT2my,, Tomp+1), A(Tan,—1, T2ny ),

5= [d(on, 1, Tamy 1) + d(Tom, , Tan, )]}

On taking limit superior as k — oo and using (3.5), we get

lim M (2o, , T2n,—1) < max{se, 0,0, 5} = se.
n—oo

From (3.8), we have
0< lifl sup C(54d(fl‘2mk ) g$2nkf1), Ml(xzmk, I2nk71))
—00
< lim sup[ My (@ gm,, , Tan,—1) — 5 A(T2my+1, Ton, )]
k—o0
= lim sup M1 (2am, , Ton,—1) — s*liminf d(@p, 11, Ton, ) < s€ — 8
k—o0 k—o0

de
s’
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a contradiction.
Therefore by Case (i) and Case (ii), we have {z,} is a b-Cauchy sequence in X.

Since X is b-complete, there exists x € X such that lim z, = u.
n—o0

Therefore x = lim x9,11 = lim fxo, and = lim x9,,2 = lim gzs,,1 so that
) n—00 n—o00 n—00 n—00
lim fxo, =2 = lim gxo,.1.
n—oo n—oo
We assume that f is b-continuous.
Since x9, — x as n — 0o, we have fxy, — fr as n — oo.
Now,
0 <d(z, fx) < s[d(z, fra) + d(fra,, fx)] = 0 as n — co.

Therefore x is a fixed point of f.
Hence by Proposition 3.1, x is a unique common fixed point of f and g.

Similarly, we can prove that x is a unique common fixed point of f and g
whenever g is b-continuous.

Eventhough, the proof of the following theorem is similar to that of Theorem
3.3, we give its proof and show the importance of the rational term dy.f2)[1+d(z,f2)]

s2(1+d(z,y))
in the inequality (2.2) (Example 4.2).

Theorem 3.4. Let (X, d) be a complete b-metric space with coefficient s > 1 and
(f,g) be a Suzuki Z-contraction type (II) maps. If either f (or) g is b-continuous
then f and g have a unique common fized point in X.

Proof. Let 2y € X be arbitrary. Since f(X) C X and g(X) C X, as in the proof of
Theorem 3.3, there exists a sequence {x,} in X such that fuy, = z9,41, gTon1 =
Topyo forn=10,1,2,....

Without loss of generality, we assume that d(z,, z,4+1) > 0 for all n.

Suppose n is even, n = 2m, (say), m € N.

Since le mln{d<xm fxn)7 d(xn—f—la gxn-i—l)} = 2_15 min{d(-r%m fom ) d(me-i—la ngm—&-l)}

)
< d(Tm, Tam+1), from (2.2), we have

<(84d(f$2m7 gx2m+1)7 MQ(mea x2m+1)) Z O, (39)

where
_ d(@2m+1,9T2m+1) [1+d(Z2m, from)]
M2(x2m,:p2m+1) = max{d($2m,$2m+1) n 1+d7(nm2m,ac2m+1)m =

d(w2m+17f$2m)[1+d T2m, fT2m) ]}
s2(1+d(z2m,Tam+1))

= max{d(a:zm, Tom+1)s A(Tomi1, Tamia) }
If d(xom, Tomi1) < d(Tomi1, Tamrz2) then Mo(xom, Tomyi1) = d(Tomi1, Tami2)-
Therefore from (3.9), we have
0 < {(s*d(zam+1, Tam+a), Mo(Tom, Tami1))
= ((s*d(Tam1, Tamy2), A(Tams1, Tami2))
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4
< d(Zoms1, Tomsz) — S d(I2m+1, $2m+2),
a contradiction.

Therefore d(x,,, Tpy1) > d(Tpa1, Tpie) When n is even. (3.10)
Now, if n is odd, n = 2m + 1, (say), m € N.
Since

% min{d(z, 11, fTny1), d(Tn, g7,)} = % min{d(zam+2, fTom+2), A(Toms1, 9Tom+1)}

< d(Tamt2, Tomt1) = A(Tpg1, Tn).
From (2.2), we have

C(S4d(f932m+2,9$2m+1), M2(1152m+2, $2m+1)) >0, (3.11)

where
_ A(T2m+1,9T2m+1)[1+d(Tom+2,fT2am+2)]
Mo (22, Dom1) = MaX{d(Lomep 2, Tomo1 ), Tm gl TR A e,

d(zam+1,fzemt2)[1+d(@2my2,fTam12)] }
s2(1+d(z2m+2,22m+1))

_ d(z2m+1,22m+2)[1+d(T2m+2,22m+3)]
= max{d($2m+2, l‘2m+1)7 1+d(T2m+2,22mi1) ’

d(x2m+1,22m+3)[1+d(T2m+2,22m+2)] }
82(1+d(z2m+2,%2m+3)) )

If d($2m+2, 1’2m+1) < d<x2m+37$2m+2) then M2($2m+27 332m+1) = d($2m+37 $2m+2)-
Therefore from (3.11), we have
0 < ¢(s*d(T2m3; Tamr2), Ma(Tamt2, Tami1))

= C(S4d($2m+3, Tom+2), A(Tam+3; Tami2))

< d(Tom43, Tam2) — S4d($2m+3, Tom+2),
a contradiction.
Therefore d(z,, Tpy1) > d(Tpi1, Tnie) when nis odd. (3.12)
From (3.10) and (3.12), it follows that {d(x,,z,41)} is a decreasing sequence of
nonnegative reals.
Thus there exists 7 > 0 such that 71113;0 d(xy, Tps1) = r. Suppose that r > 0.

By using the condition ((3) with t,, = d(zp41, Tni2) and s, = d(x,, ,41), we have
0 S lim sup C(54d(xn+1> $n+2>7 M2<1:n7 $n+1>> < 07

n—oo
it is a contradiction.

Therefore r = 0.
ie., lim d(z,,zn1) =0. (3.13)

n—o0

We now prove that {z,} is a b-Cauchy sequence.

For this it is sufficient to show that {z,} is a b-Cauchy sequence.

On the contrary suppose that {xs,} is not b-Cauchy. We now consider the following
two cases.

Case (i): s =1.

In this case, (X, d) is a metric space. Then by Lemma 1.5 there exist an € > 0 and
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sequence of positive integers {2n;} and {2my} with 2n; > 2my > k such that
d(xom,,, Tan, ) > € and d(zam, , Ton,—2) < € satisfying (i)-(iv) of Lemma 1.5.
Suppose that there exists a k; € N with £ > k; such that

1 .
5 min{d(zam,, fam, ) ATon,—1, 9Ton,—1)} > d(Tom, , Ton,—1)- (3.14)

On taking limits as k — oo in (3.14) and using (3.13), we get that ¢ <0,

a contradiction.

Therefore %min{d(xgmk,fxgmk),d(xgnk,l,gxznk,l)} < d(x2m,,, Ton,—1) and from

(2.2), we have
C(d(fx%nkagx%zk—l)u M2($2mk,$2nk—1)) > 0, where

d(iEan,l 7gx2nk71)[1+d(1'2mk ’fx2mk )]
M2 (I'kaa x?nk—l) - maX{d(l’ka, x?nk—l)a 1+d(ﬂ72mk,$2nk71) )

d(wan717f-T2mk)[1+d(z2mk7f732mk )} }
(I+d(zam,, wany, —1))
Tony —1,22n, ) [1+d(T2m, ;T2m +1)]
1+d(z2m, ;20 —1) ’
d(z2n; —1,82m +1)[1+d(T2m ) ,B2my +1)] }
(1+d(m2mk,x2nk,1)) .
On taking limits as k — oo and using (3.13), we get that

nlggo M2<x2mk> 'Ian_l) = max{e, 0, IL-FG} - ©

By using ((3) with ¢, = d(@om, +1, Ton, ) and s, = Ma(Zom, , Ton, 1), We have
0 S lim sup C(d(l’zmk+1, .Tgnk), MQ(Ika, xgnk_l» < O7

k—o0
a contradiction.

Case (ii): s > 1.

In this case, by Lemma 1.6 there exist an ¢ > 0 and sequence of positive inte-
gers {2n;} and {2my} with 2n, > 2my; > k such that d(xopm,,2,,) > € and
d(zam, , Ton,—2) < € satistying (i)-(iv) of Lemma 1.6.

Suppose that there exists a k; € N with £ > k; such that

d
= max{d(Tam, , Tan,—1), (

.
2_3 mln{d(meka f$2mk), d(9€2nk71, 9$2nk—1)} > d(x2mk> 372nk71)- (3-15)

On letting limit superior as k — oo in (3.15) and using (3.13), we get that ¢ <0,

a contradiction.
1

Therefore 5 min{d(zom,, fTom, ), d(Ton,—1, 9%on,—1)} < d(Zom,, Ton,—1) and from

(2.2), we get
C(s*d(framy s 9T2n,—1), Ma(Tamy, Ton,—1)) > 0 (3.16)

where

d(xQn —1,9%2n —1)[1+d(x2m 7f-732m )]
M2(372mk, 952n,€71) = maX{d(ilUka, $2n,€71), k k k 8

1+d(x2mkax2nk—l) )
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d(x2n, — 1,fﬂczmk)[1+Ul(962mk,fﬂﬁzm,C ]}
(1+d(x2mk’12nk 1
d(x2n, —1,T2n,; ) [1+d(T2m, ,Tom
= maX{d($2mkal'2nk 1) ooy 1112(1(2)2[7%@(;1}1;32 k+1)]7
d(xan 17x2mk+1)[1+d(x2mk7x2mk+1 ]}
2(1+d(x2mk7$2nk 1)
On taking limit superior as k& — oo and usmg (3 13), we get
lim sup Mo (2o, , Ton, —1) < max{s?e,0, ere} = s%.
n—oo
From the inequality (3.16), we have
0 S lim sup C(34d(fx2mk ) ngnk—l)a MQ(CL’ka, x2nk—1>>

k—o0

< hgl sup[Ma(Tomy s Tong—1) — $*d(Tomy+1, Tan, )]
— 00

= hin sup Ma(Zam, , Ton,—1) — s hm 1nf d(Zamy+1, Ton,,)
— 00

< 5% — 4§
a contradiction.
Therefore by Case (i) and Case (ii), we have {z,} is a b-Cauchy sequence in X.

Since X is b-complete, there exists x € X such that lim z, = x.
n—o0

bl

Therefore x = lim Topi1 = lim fro, and x = lim 29,9 = lim gxy,.1 so that
n— —00 n—o0 n—oo

lim fxy, =2 = hm gq;QnH

n—oo

We assume that f is b—contlnuous. Since x9, — x as n — 0o, we have fxo, — fx
as n — 0.
Hence, 0 < d(z, fz) < s[d(x, fre,) + d(fxae,, fr)] — 0 as n — oo.
Therefore x is a fixed point of f.
Hence, by Proposition 3.2, it follows that = is a unique common fixed point of f
and g.

Similarly, we can prove that z is a unique common fixed point of f and g
whenever ¢ is b-continuous.

4. Examples and corollaries

The following is an example in support of Theorem 3.3.
Example 4.1. Let X = [0,1]. We define d : X x X — R* by

0 if ©=y,
11 : 2
o if z,y€]0,%]
d z,y) = 15:p i 3 » 31
(=.9) 2+ if nye (31
;g(l) otherwise.

Then clearly (X, d) is a complete b-metric space with coefficient s = 5.

Here we observe that when z = -5,z =1 € (2,1] and y € (0, 2], we have

1]
d(z,2) = 2+ 52 = 23 £ 21 = 2L+ 22 :d(x,y)—i—d(y, z) so that d is not a

metric.
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We define f,g: X — X by )
x if z € [0, 2) i 0,

f(x):{g—a: if zel2 ?i] and g(m)z{lj% if:L‘E[%,?l’].

Clearly f is b-continuous.

We define ¢ : RT x R* — (—00,00) by ((s,t) = %t — s,t > 0,5 > 0.

Then ( is a simulation function. Without loss of generality, we assume that = > y.

Case (i): =,y € [0,2).

5 min{d(z, fx),d(y, gy)} = (555) (555) < 1t = d(,y).

= 1
d(fz, gy) = B d(w,y) = L d(x, fz) = L d(y, gy) = 2L d(y, fr) = 1, d(z, gy) =
ﬁ.

M (z,y) = max{d(z,y), d(z, f), d(y, gy), LAY
1

11 11 121 4935 +1

_ Eh 1
=max{}, 35,5500 — a0 =} = 15

We now consider
((s*d(fx, gy), Mi(z,y)) = {55 Mi(z,y) — s*d(fz,9y) = 155(35) — (55)*(555) = 0.

Case (ii): z,y € (3,1].

o min{d(z, fx),d(y, gy)} = (355) (555) < 32 + S = d(z,y).

d(fz,gy) = B d(x,y) = 2 + T2 d(z, fr) = 325, d(y, gy) = 24, d(y, fz) = 3,
d(x, 9y) = 535

M, (x,y) = max{d(z,y), d(z, fz),d(y, gy), Lol -

—max(R + 5o 1) = ) = 3 ) - B
We now consider
C(s*d(fx,gy), Mi(z,y)) = 100M1(33 y)—std(fz,gy) = S (B4+2H)—(5H)1(4) > 0.
Case (iii): = € (3,1],y € [0, 3]
L win{d(, fo). dly.g0)} — (£)(2) < 2 = diwg).
d(f:):,gy) :232507d( y) = 2507 ( fflf) 507 (y gy) = 250,d(y7f1’) ~ 15
d(lE,g:l/):%—f— 26 ° .
M, (2, y) = max{d(z,y),d(z, fz),d(y, gy), Lo dwl0)

+ 23 + 11
121 121 121 49(F+755" y+15]} _ M5 +5"+ 1]
2507 2507 250° 102 102 :

)
1],

I IA
|wo|ﬂ
E

DO |+

= max{5=
Now we consider 23 aty 11
C(s*d(fx, gy), Mi(z,y)) = s My (z,y) — s*d(fz, gy) = 19090(WT+>
—(5)*(3%) 2 0.
Case (iv): z =2,y € [0, 2).
imin{d( 121) Ay, 9y)} ;10 = % di@,y). 121 121
2§]:_T ,gY) = 250’d( y) = 250’d(33 fr)=0,d(y,gy) = 250,d(y, fz) = 250>d($79y) =
25 26 :
M (z,y) = max{d(z,y),d(z, fx),d(y, gy), W}
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I+y 121 23 z+y 121
0. 121 49[32 +250]} _ W5+ 35

= max{ 35 2507 V7 2507 102 102

We now consider I
C(s"d(f . gu). M (2.9)) = {550 (2. ) = s"d( . gu) = i (E ) -
(%)"(35) =2 0.

From all the above cases we conclude that (f, g) is a pair of Suzuki Z-contraction
type (I) maps.
Therefore f and g satisfy all the hypotheses of Theorem 3.3 and % is the unique
common fixed point of f and g.

The following is an example in support of Theorem 3.4.

Example 4.2. Let X = R*" and let d : X x X — R* defined by

0 if ©=y,
4 if =,y €10,1],
d(z,y) = 5+x—+y if z,y € (1,00),
% otherwise.
Then clearly (X, d) is a complete b-metric space with coefficient s = %.

We define f,g: X — X by ,
z? if z€]0,1) 222 +2 if z€]0,1)
f<x>:{x—12 if z€(l,00) andg(az):{ % if z€[l,00).
Clearly f is b-continuous.
We define ¢ : RT x Rt — (—00,00) by ((s,t) = 5t — 5,6 > 0,5 > 0.
Then ( is a simulation function. Without loss of generality, we assume that = > y.
Case (i): z,y € [0,1).

& min{d(a. fo). dly.g9)} = (B)(3) < 4= d(@.g).

d(fl’,gy) - 107d($7f$) 4 d(y gy) = 10 d($ gy) - 107d(y7 f$) = 4
1+d(z, fx d V1+d(z,fx

My(z,y) = max{d(x Y), (ygﬂ[dz;;)f 1 . élizm(y)f ]}

— maX{4, 107 489 2} = 4

Now we consider

C(sd(fz, gy), Ma(w,y)) = 155 Ma(z,y) — s'd(fz, gy) = 155(4) — (35)* (55) = 0.
Case (ii): z,y € (1, 00).

(1
%min{d(ﬂc fw) (y gy)} = (3?2)( ) < 5+x—+y —d(:v y)

d(xz,gy) =5+ x—+y
d(y, 1+d(zx, fx z)[14+d(z,fx
Mg(az,y) _ max{d(x y) (ygzi/l[dz; g(/) f )}’ (yf 13_;:6 y)f ]}
(5+ 5 [1+35] [1+
DR == c: (o i

We now consider
((s*d(fr,gy), Ma(,y)) = 155 Ma(w,y)—s*d(fr, gy) = 155 (5+ ) — (G55)* (F5) = 0.
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Case (iii): = € (1,00),y € [0,1).
ﬂmln{d( 27) (y gy)} 2:7<97 )(10) < %2(7) = d(I,y). o7
d(fx, gy) = 2 d(x,y) = 2. d(z, fx) = 3L.d(y.gy) = 3L.d(y, fz) = 4,d(z, gy) =
5+ oy
d(y.gy)1+d(z,fz)] d(y,fz)[1+d(z,f2)]

M (‘T’ y) - ma’x{d(x;g>7 279 ngrd(w,y)w I ys2(1+d(x7y)) }

_ 27 foll+igl 4+ 55] _ 4

= max{ﬁ7 101_,_%(7)10 ) (%)2(113_%)} - (%)2-

We now consider
C<S4d<fl’7gy>, MZ(x7 y)) 100M2(LL’ y) - S (f.%’ gy) - 1909()(?1%) - (%)4<%) > 0.
Case (iv): z =1,y € |0, )
5; min{d(z, fz),d(y, gy)} = d(z,y).
d(f:}c,gy) = 10,d(1‘ y) =4, d(l‘ fl’) 07d<y gy) = 107 (y f:L’) =4 d(x gy) = 7
My (z,y) = max{d(x y), (y gqfﬁiﬂﬁ f@]j d(ysgf(vl)ﬂi;i(z){z)]}
= max{4, 2 5 W} = 4.
Now we consider
C(std(fa, gy), Ma(w,y)) = g5 Ma(w,y) — s*d(fz, gy) = 155(4) — (355)* (35) = 0.
From all the above cases (f, g) is a pair of Suzuki Z-contraction type (II) maps.

Therefore f and g satisfy all the hypotheses of Theorem 3.4 and 1 is the unique
common fixed point of f and g.

d(y,fz)[1+d(z,fz)]

s2(1+d(z,y)) from

Here we observe from Case (iii) that, if we omit the term
the inequality (2.2), then the inequality (2.2) fails to hold.

For, we choose x = 2,y = <. In this case

5
L min{d(e, fo),d(y, gy)} = (2) min{d(2 P d(3,3)} = (322) min fgé;g
= (5m5) () < 35 = d(z,y).
Here d(y,gy)[1+d(z,fz)] 1 d(3.2)[1+d(2,3)]
My(z,y) = max{d(z, y), =475 = max{d(2, )’W}
—max{lo, 1[1+10]}

d(fz, fy) = d(3,4) = 5.

Now

((s*d(fr, gy), Ma(w,y)) = kMa(2,y) — s*d(fr, gy) = k(35) — (355) " (§5) 2 0 for any
ke 0,1).

Hence the term “/2)l+d@.fz)]

s2(1+d(z,y))
Corollary 4.3. Let (X,d) be a b-metric space with coefficient s > 1. Let f,g :

X — X be two selfmaps on X. Assume that there exist two continuous functions
Y, RY — Rtwith o(t) <t < (t) for allt >0 and ¢(t) = ¥(t) = 0 if and only

plays an important role in the inequality (2.2).



Common Fized Points of a Pair of Suzuki Z-contraction ... 343
if t =0 such that

S min{d(, f),d(y, 9y)} < d(x,y) implies that (s*d(fr, 9y)) < p(Ms(r.y)
(4.1)

for all x,y € X, where M(x,y) = max{d(x,y),d(z, fz),d(y, gy), W}.

If either f (or) g is b-continuous then f and g have a unique common fized point

mn X.

Proof. We choose ((t,s) = ¢(s) — ¢(t) for all t,s € RT. Then ( is a simulation

function. Also, the inequality (4.1) implies the inequality (2.1) holds with this

simulation function (. Hence by Theorem 3.3, the conclusion of this corollary

follows.

Similar to Corollary 4.3, we have the following corollary to Theorem 3.4.

Corollary 4.4. Let (X,d) be a b-metric space with coefficient s > 1. Let f,g :
X — X be two selfmaps on X. Assume that there exist two continuous functions
U, RT — RYwith p(t) <t < (t) for all t > 0 and ¢(t) = P (t) = 0 if and only
if t =0 such that

2_13 min{d(z, fz),d(y, gy)} < d(z,y) implies that ¢ (s*d(fz, gy)) < o(Ma(z,y))

d(y,9y)[1+d(z,fz)] d(y,fz)[1+d(z,
for all x,y € X, where My(x,y) = max{d(z,y), ® gzl/ﬁdz;é) L )}, (ysg(l)ij(mfy))gy)}}

Then f and g have a unique common fized point in X, provided f (or) g is b-
continuous.

By choosing ¢ = f in Theorem 3.3 and Theorem 3.4, we have the following
corollaries.

Corollary 4.5. [4] Let (X,d) be a complete b-metric space with coefficient s > 1
and [ : X — X be a Suzuki Z-contraction type (I) map. Then f has a unique
fixed point in X.

Corollary 4.6. [4] Let (X,d) be a complete b-metric space with coefficient s > 1
and f: X — X be a Suzuki Z-contraction type (II) map. Then f has a unique
fixed point in X.

5. Conclusion

In this paper, we introduced Suzuki Z-contraction type (I) maps, Suzuki Z-
contraction type (II) maps, for a pair of selfmaps in b-metric spaces and proved the
existence and uniqueness of common fixed points. Our results extend/generalize
the known results that are available in the literature. We provided examples in
support of our results and some corollaries to our results are presented.
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